Purpose: The selective killing of tumor cells is an important strategy for cancer therapeutics. The aim of this study was to develop a novel antitumor agent that is safe for normal cells with the ability to selectively target cancer cells.Experimental Design: On the basis of quantitative structure-activity relationship, we synthesized a novel polyphenol conjugate (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP-23). We evaluated the effect of DPP-23 on proliferation, cell cycle, and apoptosis in various tumor cells. We also assessed molecular targets of DPP-23 using genome-wide expression profiling by DNA microarray and real-time PCR array systems.Results: DPP-23 effectively inhibited the growth of cancer cells in vitro and in vivo (xenografts in Balb/c nude mice). At a molecular level, DPP-23 targeted the unfolded protein response (UPR) in the endoplasmic reticulum (ER) through the production of reactive oxygen species (ROS) in cancer cells, but not in normal cells, resulting in selective killing of tumor cells via caspase-dependent apoptosis.Conclusions: The selective generation of ROS in cancer cells could be an attractive strategy for the selective killing of cancer cells, while maintaining negligible cytotoxicity to normal cells. DPP-23 represents a promising novel therapeutic agent for the selective production of ROS in cancer cells. Clin Cancer Res; 20(16); 4302-13. Ó2014 AACR.
Cachexia is a wasting syndrome associated with high mortality in cancer patients through inducing the failure of normal metabolism and reducing the efficacy of cancer treatment. Thus, it is critically important to diagnose cancer cachexia early. To provide background data for the diagnosis of cachexia, cancer cachectic factors were characterized in the present situation, including immunological cachectic changes during cachexia progression in a cancer cachexia mouse model. Major constitution of cachexia progression is known as the stages of pre-cachexia, cachexia, and refractory cachexia. In the pre-cachexia stage, the weights of immune-related organs, including the thymus and spleen were significantly. T cell populations in spleen were markedly reduced and cachectic cytokines consistently increased in a time-dependent manner. Immunosuppression by activation of cytotoxic T-lymphocyte-associated antigen 4 was induced earlier in CD4 + cells versus other T cell populations. Furthermore, monocyte chemoattractant protein 1 and interleukin-6 levels in the cachexia group were significantly increased at 3 days from C26 cell inoculation whereas significant carcass weight loss as a classical diagnostic marker occurred at 9 days from C26 cell inoculation. In conclusion, the initiation of cachectic immunological changes was observed prior to weight loss, during the pre-cachexia stage. Accordingly, these findings reveal that the monitoring of humoral and immunological factors may be more sensitive than weight loss for the initial diagnosis and treatment of cachexia. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Protein phosphatase 2A (PP2A) is a ubiquitous multifunctional enzyme usually known as a tumor suppressor. Recent studies have reported that although inhibition of PP2A leads to acceleration of cell growth, it also induces damaged cells to pass through the cell cycle and renders them sensitive to radiotherapy. Here, we investigated the radiosensitizing effects of digoxin as a PP2A inhibitor in two non-small-cell lung cancer (NSCLC) cell types (H460 and A549) with differential sensitivity to radiation. Digoxin inhibited the proliferation of H460 and A549 cells in a dose-dependent fashion and was especially effective on radioresistant A549 cells. Interestingly, the radiosensitizing effect of digoxin was only present in the radioresistant A549 cells and xenografts. The combination of digoxin and ionizing radiation (IR) significantly reduced clonogenic survival and xenograft tumor growth (P<0.001), compared with IR alone. Digoxin suppressed PP2A protein expression and prevented IR-induced PP2A expression in A549 cells. Digoxin treatment combined with IR allowed the damaged cell to progress through the cell cycle via suppression of cell cycle-related proteins (p53, cyclin D1, cyclin B1, CDK4, and p-cdc2). Moreover, digoxin enhanced IR-induced DNA damage through reduction in levels of repair proteins and elevation of p-ATM foci formation up to 24 h (P<0.001). In conclusion, digoxin has a novel function as a PP2A inhibitor, and combined with IR produces a synergistic effect on radiosensitizing cells, thereby indicating a potentially promising therapeutic approach to radioresistant lung cancer treatment.
Simvastatin exhibits anticancer activities, but its molecular mechanisms and radiosensitizing effects relative to p53 status remain unclear. In this study, we investigated whether the combination of simvastatin and ionizing radiation (IR) would enhance the antitumor effects of IR alone in HCT116 p53+/+ and p53‑/- colon cancer cells. Using colony formation assays and a xenograft mouse model, we found that simvastatin potently stimulated radiosensitization of HCT116 p53‑/- cells and xenograft tumors. The combination of simvastatin with IR decreased G2/M arrest and delayed the repair of IR-induced DNA damage; however, no differences between the HCT116 p53+/+ and p53‑/- cells were evident. A further analysis revealed that simvastatin exhibited a novel function, namely, MDM2 suppression, regardless of p53 status. Interestingly, simvastatin induced radiosensitization by enhancing MDM2 suppression and elevating IR-induced p‑ATM foci formation compared with IR alone in HCT116 p53‑/- cells. Furthermore, simvastatin caused accumulations of the FOXO3a, E-cadherin, and p21 tumor suppressor proteins, which are downstream factors of MDM2, in HCT116 p53‑/- cells. In conclusion, simvastatin enhanced radiosensitivity by inducing MDM2 inhibition and increasing tumor suppressor protein levels in radioresistant HCT116 p53‑/- cells and xenografts. Overall, our novel findings suggest a scientific rationale for the clinical use of simvastatin as an MDM2 inhibitor and radiosensitizer for p53‑deficient colorectal tumor treatments.
Worldwide, colorectal cancer is the third most common cancer in men and the second most common in women. As conventional colorectal cancer therapies result in various side effects, there is a need for adjuvant therapy that can enhance the conventional therapies without complications. In this study, we investigated the anticancer effects of combined mixture of the several medicinal mushrooms and Panax ginseng root extracts (also called Amex7) as an adjuvant compound in the treatment of human colorectal cancer. We observed the in vivo inhibitory effect of Amex7 (1.25, 6.25, and 12.5 ml/kg, oral administration, twice daily) on tumor growth in a mouse model xenografted with HT-29 human colorectal cancer cells. In vitro, at 6, 12, and 24 h after 4% Amex7 treatment, we analyzed cell cycle by flow cytometry and the expression levels of cell cycle progression, apoptosis, and DNA damage repair-related proteins using immunoblotting and immunofluorescence staining in HT-29 cell line. As a result, Amex7 significantly suppressed tumor growth in HT-29 human colorectal cancer cells and xenografts. In vitro, Amex7 induced G2/M arrest through the regulation of cell cycle proteins and cell death by apoptosis and autophagy. Additionally, Amex7 consistently induced DNA damage and delayed the repair of Amex7-induced DNA damage by reducing the level of HR repair proteins. In conclusion, Amex7 enhanced anticancer effects through the induction of G2/M arrest and cell death, including apoptosis and autophagy. Furthermore, Amex7 impaired DNA damage repair. The present study provides a scientific rationale for the clinical use of a combined mixture of medicinal mushrooms and P. ginseng root extracts as an adjuvant treatment in human colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.