An organometallic methyl−nickel species was detected in the enzyme methyl-coenzyme M reductase (MCR). This is the key enzyme in microbial methane production and is probably also involved in anaerobic methane oxidation. Incubation of MCR with 13C-bromomethane results in the formation of an electron paramagnetic resonance (EPR) active nickel−methyl species in the active site of this enzyme. High-resolution pulse electron nuclear double resonance and hyperfine sublevel correlation investigations showed the presence of 13C hyperfine couplings of 18−44 MHz that are associated with the nickel-based EPR signal. The large 13C hyperfine interaction shows unambiguously that the methyl group from bromomethane is directly coordinated to the nickel ion. The EPR structure and parameters are fully supported by density functional theory calculations.
During phenotypic characterization of various Escherichia coli mutants, we observed that ⌬phoA strains are capable of using glycerol-2-phosphate (G2P) as a sole source of phosphorus. Mutations in the ugpBAECQ operon eliminated this phenotype, suggesting that G2P is a previously unrecognized substrate for the binding protein-dependent Ugp transporter.
Purpose: Development of BCL-2-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). Experimental Design: Computational modeling was used to design “lead” compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. Results: Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nM), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. Conclusions: These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.
Supplementary Figures from Lisaftoclax (APG-2575) Is a Novel BCL-2 Inhibitor with Robust Antitumor Activity in Preclinical Models of Hematologic Malignancy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.