Sensors in everyday devices, such as our phones, wearables, and computers, leave a stream of digital traces. Personal sensing refers to collecting and analyzing data from sensors embedded in the context of daily life with the aim of identifying human behaviors, thoughts, feelings, and traits. This article provides a critical review of personal sensing research related to mental health, focused principally on smartphones, but also including studies of wearables, social media, and computers. We provide a layered, hierarchical model for translating raw sensor data into markers of behaviors and states related to mental health. Also discussed are research methods as well as challenges, including privacy and problems of dimensionality. Although personal sensing is still in its infancy, it holds great promise as a method for conducting mental health research and as a clinical tool for monitoring at-risk populations and providing the foundation for the next generation of mobile health (or mHealth) interventions.
For recommender systems that base their product rankings primarily on a measure of similarity between items and the user query, it can often happen that products on the recommendation list are highly similar to each other and lack diversity. In this article we argue that the motivation of diversity research is to increase the probability of retrieving unusual or novel items which are relevant to the user and introduce a methodology to evaluate their performance in terms of novel item retrieval. Moreover, noting that the retrieval of a set of items matching a user query is a common problem across many applications of information retrieval, we formulate the trade-off between diversity and matching quality as a binary optimization problem, with an input control parameter allowing explicit tuning of this trade-off. We study solution strategies to the optimization problem and demonstrate the importance of the control parameter in obtaining desired system performance. The methods are evaluated for collaborative recommendation using two datasets and case-based recommendation using a synthetic dataset constructed from the public-domain Travel dataset.
In recent years, building change detection has made remarkable progress through using deep learning. The core problems of this technique are the need for additional data (e.g., Lidar or semantic labels) and the difficulty in extracting sufficient features. In this paper, we propose an end-to-end network, called the pyramid feature-based attention-guided Siamese network (PGA-SiamNet), to solve these problems. The network is trained to capture possible changes using a convolutional neural network in a pyramid. It emphasizes the importance of correlation among the input feature pairs by introducing a global co-attention mechanism. Furthermore, we effectively improved the long-range dependencies of the features by utilizing various attention mechanisms and then aggregating the features of the low-level and co-attention level; this helps to obtain richer object information. Finally, we evaluated our method with a publicly available dataset (WHU) building dataset and a new dataset (EV-CD) building dataset. The experiments demonstrate that the proposed method is effective for building change detection and outperforms the existing state-of-the-art methods on high-resolution remote sensing orthoimages in various metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.