Cell-mediated autoimmunity has been suggested to be involved in the melanocyte apoptosis that occurs in vitiligo. We investigated the cytotoxicity to autologous melanocytes of CD8+ T cells from the perilesional margins and peripheral blood samples of vitiligo patients. CD8+ T cells isolated from skin biopsied from the edges of depigmented skin patches of vitiligo patients or from peripheral blood samples of the same donors were proliferated in culture medium. The primary cultures of CD8+ T cells and autologous melanocytes were mixed at ratios of 1:1, 1:2 or 1:5 and incubated for 3 days. The apoptosis of the melanocytes was analyzed by flow cytometry. Secreted cytokines in selected samples were measured by cytokine arrays. The results show that the CD8+ T cells were successfully isolated from the vitiligo perilesional margins. This cell population showed a significantly higher percentage of CD69 expression (56.13±3.55 versus 29.93±2.35%, p<0.01) and CD137 expression (41.74±1.06 versus 25.97±1.63%, p<0.01) compared with CD8+ T cells in peripheral blood from the same donors. The co-culturing of CD8+ T cells from lesional skin with autologous melanocytes induced apoptosis in the melanocytes (16.63±1.21, 16.71±0.63 and 18.32±1.60% for CD8+ T cells and autologous melanocytes at ratios of 1:1, 1:2 and 1:5, respectively). IL-6 levels were much higher in the co-culture (3.01-fold higher than in a melanocyte monoculture and 17.32-fold higher than in a CD8+ T-cell monoculture). The CD8+ T cells were also demonstrated to secrete more IL-13. Taken together, our data demonstrate that the infiltration of active CD8+ T cells takes place in the vitiligo perilesional margins. Those CD8+ T cells present significantly higher activation levels and higher cytotoxicity to autologous melanocytes than their counterparts from peripheral blood samples. These data suggest that CD8+ T cells are likely to be involved in the pathogenesis of vitiligo.
We here investigated the efficiency of autologous melanocyte transplantation of 23 vitiligo patients by focusing on perilesional skin homing CD8+ T lymphocytes, and studied the potential effect of dermal mesenchymal stem cells (DMSCs) on CD8+ T cell activities in vitro. Out of 23 patients with the autologous melanocyte transplantation, 12 patients (52.17%) had an excellent re-pigmentation, 6 patients (26.09%) had a good re-pigmentation, 5 patients (21.74%) had a fair or poor re-pigmentation. CD8+ T cells infiltrating was observed in the perilesional vitiligo area of all patients. Importantly, the efficiency of the transplantation was closely associated with skin-homing CD8+ T cell activities. The patients with high number of perilesional CD8+ T cells or high level of cytokines/chemokines were associated with poor re-pigmentation efficiency. For in-vitro experiments, we successfully isolated and characterized human DMSCs and skin-homing CD8+ T cells. We established DMSCs and CD8+ T cell co-culture system, where DMSCs possessed significant inhibitory effects against skin homing CD8+ T lymphocytes. DMSCs inhibited CD8+ T cells proliferation, induced them apoptosis and regulated their cytokines/chemokines production. Our results suggest that vitiligo patients’ autologous melanocytes transplantation efficiency might be predicted by perilesional skin-homing CD8+ T cell activities, and DMSCs might be used as auxiliary agent to improve transplantation efficacy.
BackgroundInterferon-γ (IFN-γ) plays an important role in the proceedings of vitiligo through recruiting lymphocytes to the lesional skin. However, the potential effects of IFN-γ on skin melanocytes and the subsequent contribution to the vitiligo pathogenesis are still unclear.ObjectiveTo investigate the effects of IFN-γ on viability and cellular functions of melanocytes.MethodsPrimary human melanocytes were treated with IFN-γ. Cell viability, apoptosis, cell cycle melanin content and intracellular reactive oxygen species (ROS) level were measured. mRNA expression was examined by real-time PCR. The release of interleukin 6 (IL-6) and heat shock protein 70 (HSP-70) was monitored by ELISA. β-galactosidase staining was utilized to evaluate melanocyte senescence.ResultsPersistent IFN-γ treatment induced viability loss, apoptosis, cell cycle arrest and senescence in melanocytes. Melanocyte senescence was characterized as the changes in pigmentation and morphology, as well as the increase of β-galactosidase activity. Increase of p21Cip1/Waf1 protein was evident in melanocytes after IFN-γ treatment. IFN-γ induction of senescence was attenuated by siRNAs against p21, Janus kinase 2 (JAK2) or signal transducer and activator of transcription 1 (STAT1), but not by JAK1 siRNA nor by p53 inhibitor pifithrin-α. IFN-γ treatment increased the accumulation of intracellular ROS in melanocytes, while ROS scavenger N-acetyl cysteine (NAC) effectively inhibited IFN-γ induced p21 expression and melanocyte senescence. IL-6 and HSP-70 release was significantly induced by IFN-γ treatment, which was largely inhibited by NAC. The increase of IL-6 and HSP-70 release could also be observed in senescent melanocytes.ConclusionIFN-γ can induce senescence in melanocytes and consequently enhance their immuno-competency, leading to a vitiligo-prone milieu.
Soil electrical resistivity is an important parameter in grounding system design. In this study, laboratory measurements of soil electrical resistivity are carried out using a soil box. Two measurement methods are used and compared: a two-electrode method and a four-electrode method. The measurements indicate that the results reported by the two-electrode method are affected by the contact resistance between the electrodes and the soil, which increases as the soil water content increases. Moreover, the soil electrical resistivity was observed to decrease as the test signal frequency increases. Using the four-electrode method and a 50-Hz AC signal, the effects of soil water content, soil porosity, pore fluid composition, and temperature on the soil electrical resistivity are then investigated. The results show that increasing the soil saturation level results in a power-function decrease in the soil electrical resistivity. Also, for a given gravimetric water content, as the soil porosity decreases, the resistivity decreases. In addition, owing to the mobility of the ions, different electrolytes in the pore fluid contribute differently to the soil electrical resistivity. Finally, the dependence of soil electrical resistivity on soil temperature is found to be divided into three stages: above 0 degrees Celsius, around 0 degrees Celsius, and below 0 degrees Celsius. An abrupt change in the soil electrical resistivity is observed at around 0 degrees Celsius.
Niacin and its related derivatives have been shown to have effects on cellular activities. However, the molecular mechanism of its reduced immunosuppressive effects and photoprotective effects remains unclear. In this study, we investigated the molecular mechanism of the photoprotective effect of niacin in ultraviolet (UV)-irradiated human skin keratinocytes (HaCaT cells). We found that niacin effectively suppressed the UV-induced cell death and cell apoptosis of HaCaT cells. Existing data have shown that AKT activation is involved in the cell survival process. Yet, the potential mechanism of niacin in protection against UV-induced skin damage has thus far not fully been eluvidated. We observed that niacin pretreatment enhances UV induced activation of AKT (Ser473 phosphorylation) as well as that of the downstream signal mTOR (S6 and 4E-BP1 phosphorylation). The PI3K/AKT inhibitor, LY294002, and the mTOR inhibitor, rapamycin, largely neutralized the protective effects of niacin, suggesting that AKT and downstream signaling mTOR/S6 activation are necessary for the niacin-induced protective effects against UV-induced cell death and cell apoptosis. Collectively, our data suggest that niacin may be utilized to prevent UV-induced skin damage and provide a novel mechanism of its photoprotective effects against the UV radiation of sunlight by modulating both AKT and downstream mTOR signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.