Background and purpose: Pharmacological validation of novel functions for the a 2A -, a 2B -, and a 2C -adrenoceptor (AR) subtypes has been hampered by the limited specificity and subtype-selectivity of available ligands. The current study describes a novel highly selective a 2C -adrenoceptor antagonist, JP-1302 (acridin-9-yl-[4-(4-methylpiperazin-1-yl)-phenyl]amine). Experimental approach: Standard in vitro binding and antagonism assays were employed to demonstrate the a 2C -AR specificity of JP-1302. In addition, JP-1302 was tested in the forced swimming test (FST) and the prepulse-inhibition of startle reflex (PPI) model because mice with genetically altered a 2C -adrenoceptors have previously been shown to exhibit different reactivity in these tests when compared to wild-type controls. Key results: JP-1302 displayed antagonism potencies (K B values) of 1,500, 2,200 and 16 nM at the human a 2A -, a 2B -, and a 2C -adrenoceptor subtypes, respectively. JP-1302 produced antidepressant and antipsychotic-like effects, i.e. it effectively reduced immobility in the FST and reversed the phencyclidine-induced PPI deficit. Unlike the a 2 -subtype non-selective antagonist atipamezole, JP-1302 was not able to antagonize a 2 -agonist-induced sedation (measured as inhibition of spontaneous locomotor activity), hypothermia, a 2 -agonist-induced mydriasis or inhibition of vas deferens contractions, effects that have been generally attributed to the a 2A -adrenoceptor subtype. In contrast to JP-1302, atipamezole did not antagonize the PCPinduced prepulse-inhibition deficit.
Conclusions and implications:The results provide further support for the hypothesis that specific antagonism of the a 2C -adrenoceptor may have therapeutic potential as a novel mechanism for the treatment of neuropsychiatric disorders.
Neuropeptide FF (NPFF) and prolactin-releasing peptide (PrRP) are two members of the RFamide peptide family. In this study we investigated whether these RFamide peptides, which have common structural features in their C-terminal RFamide motif and share several physiologically important functions, could exert their effects through the same set of receptors. The affinity and functional activity of several related RFamide peptides were determined at the human neuropeptide FF receptor subtype 2 (hNPFF2) and the human prolactin-releasing peptide (hPrRP) receptors. The full-length human prolactin releasing peptide 31 (hPrRP31) had significantly higher efficacy compared with NPFF and its stable analog, (1DMe)Y8Fa, at the hNPFF2 receptor. In contrast, NPFF and (1DMe)Y8Fa were not efficacious at the hPrRP receptor. Our study indicated a generally relatively low level of discrimination for RFamide peptides at the NPFF receptor, whereas the hPrRP receptor clearly preferred PrRP or very closely related peptides. The seemingly promiscuous binding of the RFamide peptides to the NPFF receptor was further confirmed by receptor autoradiography. PrRP may thus signal through the NPFF receptors in vivo.
Previous studies in the MPTP-lesioned primate model of Parkinson's disease have demonstrated that alpha(2) adrenergic receptor antagonists such as idazoxan, rauwolscine, and yohimbine can alleviate L-dopa-induced dyskinesia and, in the case of idazoxan, enhance the duration of anti-parkinsonian action of L-dopa. Here we describe a novel alpha(2) antagonist, fipamezole (JP-1730), which has high affinity at human alpha(2A) (K(i), 9.2 nM), alpha(2B) (17 nM), and alpha(2C) (55 nM) receptors. In functional assays, the potent antagonist properties of JP-1730 were demonstrated by its ability to reduce adrenaline-induced (35)S-GTPgammaS binding with K(B) values of 8.4 nM, 16 nM, 4.7 nM at human alpha(2A), alpha(2B), and alpha(2C) receptors, respectively. Assessment of the ability of JP-1730 to bind to a range of 30 other binding sites showed that JP-1730 also had moderate affinity at histamine H1 and H3 receptors and the serotonin (5-HT) transporter (IC(50) 100 nM to 1 microM). In the MPTP-lesioned marmoset, JP-1730 (10 mg/kg) significantly reduced L-dopa-induced dyskinesia without compromising the anti-parkinsonian action of L-dopa. The duration of action of the combination of L-dopa and JP-1730 (10 mg/kg) was 66% greater than that of L-dopa alone. These data suggest that JP-1730 is a potent alpha(2) adrenergic receptor antagonist with potential as an anti-dyskinetic agent in the treatment of Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.