Background Major retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and retinal detachment, are associated with a local decrease in oxygen availability causing the formation of hypoxic areas affecting the photoreceptor (PR) cells. Here, we addressed the underlying pathological mechanisms of PR degeneration by focusing on energy metabolism during chronic activation of hypoxia-inducible factors (HIFs) in rod PR. Methods We used two-photon laser scanning microscopy (TPLSM) of genetically encoded biosensors delivered by adeno-associated viruses (AAV) to determine lactate and glucose dynamics in PR and inner retinal cells. Retinal layer-specific proteomics, in situ enzymatic assays and immunofluorescence studies were used to analyse mitochondrial metabolism in rod PRs during chronic HIF activation. Results PRs exhibited remarkably higher glycolytic flux through the hexokinases than neurons of the inner retina. Chronic HIF activation in rods did not cause overt change in glucose dynamics but an increase in lactate production nonetheless. Furthermore, dysregulation of the oxidative phosphorylation pathway (OXPHOS) and tricarboxylic acid (TCA) cycle in rods with an activated hypoxic response decelerated cellular anabolism causing shortening of rod photoreceptor outer segments (OS) before onset of cell degeneration. Interestingly, rods with deficient OXPHOS but an intact TCA cycle did not exhibit these early signs of anabolic dysregulation and showed a slower course of degeneration. Conclusion Together, these data indicate an exceeding high glycolytic flux in rods and highlight the importance of mitochondrial metabolism and especially of the TCA cycle for PR survival in conditions of increased HIF activity.
Background: Major retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and retinal detachment, are associated with a local decrease in oxygen availability causing the formation of hypoxic areas affecting the photoreceptor (PR) cells. Here, we addressed the underlying pathological mechanisms of PR degeneration by focusing on energy metabolism during chronic activation of hypoxia-inducible factors (HIFs) in rod PR. Methods: We used two-photon laser scanning microscopy (TPLSM) of genetically encoded biosensors delivered by adeno-associated viruses (AAV) to determine lactate and glucose dynamics in PR and inner retinal cells. Retinal layer-specific proteomics, in situ enzymatic assays and immunofluorescence studies were used to analyse mitochondrial metabolism in rod PRs during chronic HIF activation. Results: PRs exhibited remarkably higher glycolytic flux through the hexokinases than neurons of the inner retina. Chronic HIF activation in rods did not cause overt change in glucose dynamics but an increase in lactate production nonetheless. Furthermore, dysregulation of the oxidative phosphorylation pathway (OXPHOS) and tricarboxylic acid (TCA) cycle in rods with an activated hypoxic response decelerated cellular anabolism causing shortening of rod photoreceptor outer segments (OS) before onset of cell degeneration. Interestingly, rods with deficient OXPHOS but an intact TCA cycle did not exhibit these early signs of anabolic dysregulation and showed a slower course of degeneration. Conclusion: Together, these data indicate an exceeding high glycolytic flux in rods and highlight the importance of mitochondrial metabolism and especially of the TCA cycle for PR survival in conditions of increased HIF activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.