We assess how the utilization of different DFT functionals for obtaining the equilibrium geometries and vibrational frequencies affect the description of the thermochemistry and subsequent calculation of the optical properties of a dihydroazulene-vinylheptafulvene photoswitch. The assessment covers nine popular DFT functionals (BLYP, B3LYP, CAM-B3LYP, M06-L, M06, M06-2X, PBE, PBE0, and ωB97X-D) in conjugation with five different Pople style basis sets (6-31+G(d), 6-31++G(d,p), 6-311+G(d), 6-311++G(d,p), and 6-311++G(3df,3pd)). It is identified that only CAM-B3LYP, M06-2X, and PBE0 are able to quantitatively describe the correct trends in the thermochemical properties. The subsequent calculation of the optical properties using the CAM-B3LYP functional shows that there is little difference in whether the CAM-B3LYP, M06-2X, or PBE0 functionals have been used to calculate the equilibrium geometries. Utilizing the identified functionals, we investigate how the number of electron withdrawing cyano substituents influence the thermochemistry and optical properties of the molecular photoswitch.
We have investigated the effects of substituents on the properties of the dihydroazulene/vinylheptafulvene photoswitch. The focus is on the changes of the thermochemical properties by placing electron withdrawing and donating groups on the monocyano and dicyano structures of the parent dihydroazulene and vinylheptafulvene compounds. We wish to increase the energy storage capacity, that is, the energy difference between the dihydroazulene and vinylheptafulvene isomers, of the photoswitch by computational molecular design and have performed over 9000 electronic structure calculations using density functional theory. Based on these calculations, we obtain design rules for how to increase the energy storage capacity of the photoswitch. Furthermore, we have investigated how the activation energy for the thermally induced vinylheptafulvene to dihydroazulene conversion depends on the substitution pattern, and based on these results, we have outlined molecular design considerations for obtaining new desired target structures exhibiting long energy storage times. Selected candidate systems have also been investigated in terms of optical properties to elucidate how sensitive the absorption maxima are to the functionalizations.
This paper studies how nanoparticles affect photochromic systems, focusing on the influence of gold nanoparticles on the optical properties of the dihydroazulene/vinylheptafulvene (DHA/VHF) system.
Former work has improved the energy storage capacity of the dihydroazulene/vinylheptafulvene photo/thermoswitch by substitution with NH and NO in vacuum. This work extends the former by investigating the solvent effects systematically using cyclohexane, toluene, dichloromethane, ethanol, and acetonitrile and comparing them with the inclusion of vacuum calculations. The investigation includes more than 8000 calculations using density functional theory for comparison of energy storage capacities, activation energies for the thermal conversion of vinylheptafulvene to dihydroazulene, and UV-Vis absorption spectra. We thereby establish design and solvent guidelines in order to obtain an optimal performance of the dihydroazulene/vinylheptafulvene system for use in a solar energy harvesting and storing device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.