The current nomogram accounts for elapsed time since starting adjuvant endocrine treatment and optimizes prediction of individual 5-year DOS during FU for postmenopausal, endocrine-sensitive BC patients. The nomogram can facilitate in determining whether further therapy will benefit an individual patient, although validation in an independent dataset is still needed.
In multi-state models, the expected length of stay (ELOS) in a state is not a straightforward object to relate to covariates, and the traditional approach has instead been to construct regression models for the transition intensities and calculate ELOS from these. The disadvantage of this approach is that the effect of covariates on the intensities is not easily translated into the effect on ELOS, and it typically relies on the Markov assumption. We propose to use pseudo-observations to construct regression models for ELOS, thereby allowing a direct interpretation of covariate effects while at the same time avoiding the Markov assumption. For this approach, all we need is a non-parametric consistent estimator for ELOS. For every subject (and for every state of interest), a pseudo-observation is constructed, and they are then used as outcome variables in the regression model. We furthermore show how to construct longitudinal (pseudo-) data when combining the concept of pseudo-observations with landmarking. In doing so, covariates are allowed to be time-varying, and we can investigate potential time-varying effects of the covariates. The models can be fitted using generalized estimating equations, and dependence between observations on the same subject is handled by applying the sandwich estimator. The method is illustrated using data from the US Health and Retirement Study where the impact of socio-economic factors on ELOS in health and disability is explored. Finally, we investigate the performance of our approach under different degrees of left-truncation, non-Markovianity, and right-censoring by means of simulation.
Pseudo-observations have been introduced as a way to perform regression analysis of a mean value parameter related to a right-censored time-to-event outcome, such as the survival probability or the restricted mean survival time. Since the introduction of the approach there have been several extensions from the original setting. However, the proper definition and performance of pseudo-observations under left-truncation has not yet been addressed. Here, we look at two types of pseudo-observations under right-censoring and left-truncation. We explored their performance in a simulation study and applied them to data on diabetes patients with left-truncation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.