Mounting evidence suggests that patterns of local relatedness can change over time in predictable ways, a process termed kinship dynamics. Kinship dynamics may occur at the level of the population or social group, where the mean relatedness across all members of the population or group changes over time, or at the level of the individual, where an individual's relatedness to its local group changes with age. Kinship dynamics are likely to have fundamental consequences for the evolution of social behaviour and life history because they alter the inclusive fitness payoffs to actions taken at different points in time. For instance, growing evidence suggests that individual kinship dynamics have shaped the evolution of menopause and age-specific patterns of helping and harming. To date, however, the consequences of kinship dynamics for social evolution have not been widely explored. Here we review the patterns of kinship dynamics that can occur in natural populations and highlight how taking a kinship dynamics approach has yielded new insights into behaviour and life-history evolution. We discuss areas where analysing kinship dynamics could provide new insight into social evolution, and we outline some of the challenges in predicting and quantifying kinship dynamics in natural populations.
Social structure is a fundamental aspect of animal populations. In order to understand the function and evolution of animal societies, it is important to quantify how individual attributes, such as age and sex, shape social relationships. Detecting these influences in wild populations under natural conditions can be challenging, especially when social interactions are difficult to observe and broad-scale measures of association are used as a proxy. In this study, we use unoccupied aerial systems to observe association, synchronous surfacing, and physical contact within a pod of southern resident killer whales ( Orcinus orca ) . We show that interactions do not occur randomly between associated individuals, and that interaction types are not interchangeable. While age and sex did not detectably influence association network structure, both interaction networks showed significant social homophily by age and sex, and centrality within the contact network was higher among females and young individuals. These results suggest killer whales exhibit interesting parallels in social bond formation and social life histories with primates and other terrestrial social mammals, and demonstrate how important patterns can be missed when using associations as a proxy for interactions in animal social network studies.
The extended female postreproductive life span found in humans and some toothed whales remains an evolutionary puzzle. Theory predicts demographic patterns resulting in increased female relatedness with age (kinship dynamics) can select for a prolonged postreproductive life span due to the combined costs of intergenerational reproductive conflict and benefits of late‐life helping. Here, we test this prediction using >40 years of longitudinal demographic data from the sympatric yet genetically distinct killer whale ecotypes: resident and Bigg's killer whales. The female relatedness with age is predicted to increase in both ecotypes, but with a less steep increase in Bigg's due to their different social structure. Here, we show that there is a significant postreproductive life span in both ecotypes with >30% of adult female years being lived as postreproductive, supporting the general prediction that an increase in local relatedness with age predisposes the evolution of a postreproductive life span. Differences in the magnitude of kinship dynamics however did not influence the timing or duration of the postreproductive life span with females in both ecotypes terminating reproduction before their mid‐40s followed by an expected postreproductive period of about 20 years. Our results highlight the important role of kinship dynamics in the evolution of a long postreproductive life span in long‐lived mammals, while further implying that the timing of menopause may be a robust trait that is persistent despite substantial variation in demographic patterns among populations.
Southern right whales (Eubalaena australis) invest substantial amounts of energy in their calves, while facing the risk of having them predated upon by eavesdropping killer whales (Orcinus orca). We tested the hypothesis that southern right whale mother-calf pairs employ acoustic crypsis to reduce acoustic detectability by such predators. Specifically, we deployed multi-sensor DTAGs on nine lactating whales for a total of 62.9 h in a Western Australian breeding ground, and used a SoundTrap to estimate the concomitant acoustic background noise. Vocalisations were recorded at low rates of <10 calls h −1 (1 call per dive) and at low received levels between 123±8 and 134±10 dB re. 1 µPa RMS depending on call type. We conclude that such acoustic crypsis in southern right whales and other baleen whales decreases the risk of alerting potential predators and hence jeopardizing a substantial energetic investment by the mother.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.