Understanding the dynamics and fate of methane (CH4) release from oceanic seepages on margins and shelves into the water column, and quantifying the budget of its total discharge at different spatial and temporal scales, currently represents a major scientific undertaking. Previous works on the fate of methane escaping from the seafloor underlined the challenge in both, estimating its concentration distribution and identifying gradients. In April 2019, the Envri Methane Cruise has been conducted onboard the R/V Mare Nigrum in the Western Black Sea to investigate two shallow methane seep sites at ∼120 m and ∼55 m water depth. Dissolved CH4 measurements were conducted with two continuous in-situ sensors: a membrane inlet laser spectrometer (MILS) and a commercial methane sensor (METS) from Franatech GmbH. Additionally, discrete water samples were collected from CTD-Rosette deployment and standard laboratory methane analysis was performed by gas chromatography coupled with either purge-and-trap or headspace techniques. The resulting vertical profiles (from both in situ and discrete water sample measurements) of dissolved methane concentration follow an expected exponential dissolution function at both sites. At the deeper site, high dissolved methane concentrations are detected up to ∼45 m from the seabed, while at the sea surface dissolved methane was in equilibrium with the atmospheric concentration. At the shallower site, sea surface CH4 concentrations were four times higher than the expected equilibrium value. Our results seem to support that methane may be transferred from the sea to the atmosphere, depending on local water depths. In accordance with previous studies, the shallower the water, the more likely is a sea-to-atmosphere transport of methane. High spatial resolution surface data also support this hypothesis. Well localized methane enriched waters were found near the surface at both sites, but their locations appear to be decoupled with the ones of the seafloor seepages. This highlights the need of better understanding the processes responsible for the transport and transformation of the dissolved methane in the water column, especially in stratified water masses like in the Black Sea.
<p>Methane is an important greenhouse gas and an energy resource. Methane in sea water can originate from microbially-mediated&#160;organic matter (OM) degradation processes at shallow depth&#160; within the sediments, or from thermal cracking of refractory OM at deeper depth. On continental margins, this methane is stored in specific sedimentological bodies or as gas hydrates, or is released at the seafloor as submarine geological seeps followed by its oxidation in the water mass. However, methane released at the seafloor may not entirely be oxidized in the water column and a fraction of it may ultimately reach the atmosphere. The factors that govern the magnitude of methane transfer through the water column to the atmosphere remain poorly known. It has been identified that the amount of methane transferred to the atmosphere is strongly dependent on sites, and the thickness of the water column plays a critical role.</p><p>The Black Sea shelf and margin are known to host a large number of strong methane seepages. It has therefore been identified as a perfect candidate to investigate the fate of methane released from the seafloor to the atmosphere. This area can also act as a proxy for investigating the fate of methane in potential scenarios of hydrate destabilization in a changing climate, which can become a societal problem in the future. In the frame of ENVRIplus H2020 project (www.envriplus.eu) we developed a joint pilot experiment to measure methane transfer from the seafloor to the atmosphere, in a pilot study involving European research infrastructures ICOS, Eurofleets, EMSO and ACTRIS. We investigated the influence of depth by mapping CH4 concentration and bubble distribution at two different sites, at 60m and 100m water depth, respectively. The pilot experiment developed joint monitoring strategy for methane detection at various levels starting from the seafloor and moving across the water column, the water/air interface and the atmosphere. An EK80 echosounder was used to identify emission areas through massive bubble plumes. The methodology applied integrates (1) sampling from the geosphere, hydrosphere and atmosphere for laboratory measurements of methane concentration by well-proven standard methods together with &#948;13CH4 analysis, (2) in situ measurements of methane concentration into the water column and the atmosphere, and (3) the deployment of a seafloor observatory for a short monitoring period (4-5 days) to evaluate the temporal variability of gas fluxes.</p><p>During the cruise we found several occurrences of bubble plumes extending near the surface. Our measurements indicate that dissolved methane concentration drastically decreases from the seafloor to the water surface, highlighting its degradation and dispersion along the pathway to the atmosphere. The atmospheric data suggests a consistent input of marine methane to the atmosphere at the shallower site,. Our study highlights the observational challenges both for the measurement of methane from in situ and laboratory methods, and for the estimation of sea surface fluxes.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.