Compelling research has recently shown that cancer is so heterogeneous that single research centres cannot produce enough data to fit prognostic and predictive models of sufficient accuracy. Data sharing in precision oncology is therefore of utmost importance. The Findable, Accessible, Interoperable and Reusable (FAIR) Data Principles have been developed to define good practices in data sharing. Motivated by the ambition of applying the FAIR Data Principles to our own clinical precision oncology implementations and research, we have performed a systematic literature review of potentially relevant initiatives. For clinical data, we suggest using the Genomic Data Commons model as a reference as it provides a field-tested and well-documented solution. Regarding classification of diagnosis, morphology and topography and drugs, we chose to follow the World Health Organization standards, i.e. ICD10, ICD-O-3 and Anatomical Therapeutic Chemical classifications, respectively. For the bioinformatics pipeline, the Genome Analysis ToolKit Best Practices using Docker containers offer a coherent solution and have therefore been selected. Regarding the naming of variants, we follow the Human Genome Variation Society's standard. For the IT infrastructure, we have built a centralized solution to participate in data sharing through federated solutions such as the Beacon Networks.
Within recent years, many precision cancer medicine initiatives have been developed. Most of these have focused on solid cancers, while the potential of precision medicine for patients with hematological malignancies, especially in the relapse situation, are less elucidated. Here, we present a demographic unbiased and observational prospective study at Aalborg University Hospital Denmark, referral site for 10% of the Danish population. We developed a hematological precision medicine workflow based on sequencing analysis of whole exome tumor DNA and RNA. All steps involved are outlined in detail, illustrating how the developed workflow can provide relevant molecular information to multidisciplinary teams. A group of 174 hematological patients with progressive disease or relapse was included in a non-interventional and population-based study, of which 92 patient samples were sequenced. Based on analysis of small nucleotide variants, copy number variants, and fusion transcripts, we found variants with potential and strong clinical relevance in 62% and 9.5% of the patients, respectively. The most frequently mutated genes in individual disease entities were in concordance with previous studies. We did not find tumor mutational burden or micro satellite instability to be informative in our hematologic patient cohort.
Background Patients with hematological cancer who experience relapse or progressive disease often face yet another line of treatment and continued mortality risk that could increase their physical and emotional trauma and worsen their health-related quality of life. Healthcare professionals who use patient-reported outcomes to identify who will have specific sensitivities in particular health-related quality of life domains may be able to individualize and target treatment and supportive care, both features of precision medicine. Here, in a cohort of patients with relapsed or progressive hematological cancer, we sought to identify health-related quality of life domains in which they experienced deterioration after relapse treatment and to investigate health-related quality of life patterns. Method Patients were recruited in connection with a precision medicine study at the Department of Hematology, Aalborg University Hospital. They completed the European Organization for Research and Treatment of Cancer questionnaire and the Hospital Anxiety and Depression Scale at baseline and at 3, 6, 9, and 12 months after the relapse diagnosis or progressive cancer. Modes of completion were electronically or on paper. Clinically relevant changes from baseline to 12 months were interpreted according to Cocks’ guidelines. We quantified the number of patients with moderate or severe symptoms and functional problems and the number who experienced improvements or deterioration from baseline to 12 months. Results A total of 104 patients were included, of whom 90 (87%) completed baseline questionnaires and 50 (56%) completed the 12-month assessments. The three symptoms that patients most often reported as deteriorating were fatigue (18%), insomnia (18%), and diarrhea (18%). The three functions that patients most often reported as deteriorating were role (16%) and emotional (16%) and cognitive (16%) functioning. Conclusion In this study, patient-reported outcome data were useful for identifying negatively affected health-related quality of life domains in patients with relapsed or progressive hematological cancer. We identified patients experiencing deterioration in health-related quality of life during treatment and characterized a potential role for patient-reported outcomes in precision medicine to target treatment and supportive care in this patient group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.