Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids thus fail to reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions are controlled and most terrestrial species reside. Here we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0-5 and 5-15 cm depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all of the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding 2 m gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (3.6 ± 2.3°C warmer than gridded air temperature), whereas soils in warm and humid environments are on average slightly cooler (0.7 ± 2.3°C cooler). The observed substantial and biome-specific offsets underpin that the projected impacts of climate and climate change on biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining global gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Research in environmental science relies heavily on global climatic grids derived from estimates of air temperature at around 2 meter above ground1-3. These climatic grids however fail to reflect conditions near and below the soil surface, where critical ecosystem functions such as soil carbon storage are controlled and most biodiversity resides4-8. By using soil temperature time series from over 8500 locations across all of the world’s terrestrial biomes4, we derived global maps of soil temperature-related variables at 1 km resolution for the 0–5 and 5–15 cm depth horizons. Based on these maps, we show that mean annual soil temperature differs markedly from the corresponding 2 m gridded air temperature, by up to 10°C, with substantial variation across biomes and seasons. Soils in cold and/or dry biomes are annually substantially warmer (3.6°C ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are slightly cooler (0.7 ± 2.3°C). As a result, annual soil temperature varies less (by 17%) across the globe than air temperature. The effect of macroclimatic conditions on the difference between soil and air temperature highlights the importance of considering that macroclimate warming may not result in the same level of soil temperature warming. Similarly, changes in precipitation could alter the relationship between soil and air temperature, with implications for soil-atmosphere feedbacks9. Our results underpin that the impacts of climate and climate change on biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.