The outbreak of COVID-19 poses unprecedent challenges to global health 1 . The new coronavirus, SARS-CoV-2, shares high sequence identity to SARS-CoV and a bat coronavirus RaTG13 2 . While bats may be the reservoir host for various coronaviruses 3,4 , whether SARS-CoV-2 has other hosts remains ambiguous. In this study, one coronavirus isolated from a Malayan pangolin showed 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S genes, respectively. In particular, the receptor-binding domain within the S protein of the Pangolin-CoV is virtually identical to that of SARS-CoV-2, with one noncritical amino acid difference. Results of comparative genomic analysis suggest that SARS-CoV-2 might have originated from the recombination of a Pangolin-CoV-like virus with a Bat-CoV-RaTG13-like virus. The Pangolin-CoV was detected in 17 of 25 Malayan pangolins analyzed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against Pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus that is highly related to SARS-CoV-2 in pangolins suggests that they have the potential to act as the intermediate host of SARS-CoV-2. The newly identified coronavirus in the most-trafficked mammal could represent a future threat to public health if wildlife trade is not effectively controlled.As coronaviruses (CoVs) are common in mammals and birds 5 , we used the whole genome sequence of SARS-CoV-2 (WHCV; GenBank accession No. MN908947) in a Blast search of SARS-relate CoV (SARSr-CoV) sequences in available mammalian and avian viromic, metagenomic, and transcriptomic data. This led to the identification of 34 highly related contigs in a set of pangolin viral metagenomes (Extended
The outbreak of 2019-nCoV in the central Chinese city of Wuhan at the end of 2019 poses unprecedent public health challenges to both China and the rest world 1 . The new coronavirus shares high sequence identity to SARS-CoV and a newly identified bat coronavirus 2 . While bats may be the reservoir host for various coronaviruses, whether 2019-nCoV has other hosts is still ambiguous. In this study, one coronavirus isolated from Malayan pangolins showed 100%, 98.2%, 96.7% and 90.4% amino acid identity with 2019-nCoV in the E, M, N and S genes, respectively. In particular, the receptor-binding domain of the S protein of the Pangolin-CoV is virtually identical to that of 2019-nCoV, with one amino acid difference. Comparison of available genomes suggests 2019-nCoV might have originated from the recombination of a Pangolin-CoV-like virus with a Bat-CoV-RaTG13-like virus. Infected pangolins showed clinical signs and histopathological changes, and the circulating antibodies reacted with the S protein of 2019-nCoV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.