As the world human population and industrialization keep growing, the water availability issue has forced scientists, engineers, and legislators of water supply industries to better manage water resources. Pollutant removals from wastewaters are crucial to ensure qualities of available water resources (including natural water bodies or reclaimed waters). Diverse techniques have been developed to deal with water quality concerns. Carbon based nanomaterials, especially carbon nanotubes (CNTs) with their high specific surface area and associated adsorption sites, have drawn a special focus in environmental applications, especially water and wastewater treatment. This critical review summarizes recent developments and adsorption behaviors of CNTs used to remove organics or heavy metal ions from contaminated waters via adsorption and inactivation of biological species associated with CNTs. Foci include CNTs synthesis, purification, and surface modifications or functionalization, followed by their characterization methods and the effect of water chemistry on adsorption capacities and removal mechanisms. Functionalized CNTs have been proven to be promising nanomaterials for the decontamination of waters due to their high adsorption capacity. However, most of the functional CNT applications are limited to lab-scale experiments only. Feasibility of their large-scale/industrial applications with cost-effective ways of synthesis and assessments of their toxicity with better simulating adsorption mechanisms still need to be studied.
The need of wastewater (WW) treatment is increasing along with the production of WW and its disposal without treatment. With a smaller footprint, ease of operation, and relatively less cost, trickling filter (TF) wastewater treatment systems have been considered to be more adoptable for domestic and industrial WW treatment in underdeveloped and/or developing countries -particularly for Asia and Africa. A relatively lowcost and operationally effective TF wastewater treatment system was developed using farm waste cotton sticks as biofilm support media. During the operation of the TF system, flow rates vary from 1.7 to 4.6 m 3 /hr. The attained removal efficiency for BOD (biological oxygen demand) was 69-78% and for chemical oxygen demand (COD) was 65-80%. The solids removal in TF system was 38-56% for total suspended solids (TSS) and 20-36% for total dissolved solids (TDS). Other aggregates such as turbidity and color removal were 32-54% and 25-42%, respectively. Four to five months of trouble-free operation of the developed TF system indicated the robustness and reliability of the system. Cotton sticks appeared to be a degradation-resistant alternative filter media for the TF system. Moreover, it is useful for reducing potential impacts of WW re-use at the farm level. Treated effluents through the TF system can be re-used as an irrigation water supplement in under-developed and/or developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.