An intrabody nanonetwork (IBNN) is composed of nanoscale (NS) devices, implanted inside the human body for collecting diverse physiological information for diagnostic and treatment purposes. The unique constraints of these NS devices in terms of energy, storage and computational resources are the primary challenges in the effective designing of routing protocols in IBNNs. Our proposed work explicitly considers these limitations and introduces a novel energy-efficient routing scheme based on a fuzzy logic and bio-inspired firefly algorithm. Our proposed fuzzy logic-based correlation region selection and bio-inspired firefly algorithm based nano biosensors (NBSs) nomination jointly contribute to energy conservation by minimizing transmission of correlated spatial data. Our proposed fuzzy logic-based correlation region selection mechanism aims at selecting those correlated regions for data aggregation that are enriched in terms of energy and detected information. While, for the selection of NBSs, we proposed a new bio-inspired firefly algorithm fitness function. The fitness function considers the transmission history and residual energy of NBSs to avoid exhaustion of NBSs in transmitting invaluable information. We conduct extensive simulations using the Nano-SIM tool to validate the in-depth impact of our proposed scheme in saving energy resources, reducing end-to-end delay and improving packet delivery ratio. The detailed comparison of our proposed scheme with different scenarios and flooding scheme confirms the significance of the optimized selection of correlated regions and NBSs in improving network lifetime and packet delivery ratio while reducing the average end-to-end delay.Sensors 2020, 19, 5526 2 of 26 diagnosis purposes. Due to their small size and better electronic properties, these NBSs have the potential to operate inside the human body without interrupting cellular biological function. One of the types of these NBSs is surface plasmon resonance sensors, which have already been deployed for effectively diagnosing various types of cancers and cardiovascular diseases [9,10].The tremendous potential of IBNNs in revolutionizing healthcare structure is confined by several fundamental limitations including, Nanoscale (NS) communication challenges and inadequate resources of NBSs in terms of energy, storage and computation [9,11]. In the last few years, research communities focused their attention on addressing these primary challenges for realizing the broader scope of IBNNs. In the context of enabling NS communication, electromagnetic communication in the Terahertz Band (THz) has received significant consideration [10,12]. The immense opportunities brought by electromagnetic communication in THz band such as extremely high data communication speed are leading to the development of new electromagnetic-based communication schemes [13,14]. The development of novel schemes for IBNNs also requires an in-depth comprehension of the intense energy constraint of these NBSs for effective outcomes. The extreme energy c...
A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce.
Underwater Acoustic Network (UAN) is an emerging technology with attractive applications. In such type of networks, the control-overhead, redundant inner-network transmissions management, and data-similarity are still very challenging. The cluster-based frameworks manage the control-overhead and redundant inner-network transmissions persuasively. However, the current clustering protocols consume a big part of their energy resources in data-similarity as these protocols periodically sense and forward the same information. In this paper, we introduce a novel two-level Redundant Transmission Control (RTC) approach that ensures the data-similarity using some statistical tests with an appropriate degree of confidence. Later, the Cluster Head (CH) and the Region Head (RH) remove the data-similarity from the original data before forwarding it to the next level. We also introduce a new spatiotemporal and dynamic CH role rotation technique which is capable to adjust the drifted field nodes because of water current movements. The beauty of the proposed model is that the RH controls the communications and redundant transmission between the CH and Mobile Sink (MS), while the CH controls the redundant inner-network transmissions and data-similarity between the cluster members. We conduct simulations to evaluate the performance of our designed framework under different criteria such as average end-to-end delay, the packet delivery ratio, and energy consumption of the network with respect to the recent schemes. The presented results reveal that the proposed model outperforms the current approaches in terms of the selected metrics.
Employee attrition refers to the natural reduction in the employees in an organization due to many unavoidable factors. Employee attrition results in a massive loss for an organization. The Society for Human Resource Management (SHRM) determines that USD 4129 is the average cost-per-hire for a new employee. According to recent stats, 57.3% is the attrition rate in the year 2021. A research study needs to be implemented to find the causes of employee attrition and a learning framework to predict employee attrition. This research study aimed to analyze the organizational factors that caused employee attrition and the prediction of employee attrition using machine learning techniques. The four machine learning techniques were applied in comparison. The proposed optimized Extra Trees Classifier (ETC) approach achieved an accuracy score of 93% for employee attrition prediction. The proposed approach outperformed recent state-of-the-art studies. The Employee Exploratory Data Analysis (EEDA) was applied to determine the factors that caused employee attrition. Our study revealed that the monthly income, hourly rate, job level, and age are the key factors that cause employee attrition. Our proposed approach and research findings help organizations overcome employee attrition by improving the factors that cause attrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.