Transparent conducting oxides (TCO) are semiconducting materials that are electrically conductive as well as optically transparent thus making them suitable for application in photovoltaics, transparent heat transfer windows, electrochromic windows, flexible display, and transparent electronics. One of the methods to enhance the conductivity of metal oxides is doping, however, it can adversely affect the optical transparency of metal oxide. Aluminum (Al) doped zinc (Zn) oxide (AZO) is an important TCO material whose optoelectronic properties heavily rely on the Al doping level. There are various methods to develop AZO thin films. However, since Al and Zn are high vapor pressure materials, and their precise content control isn’t that easy, that’s why we dedicated this study to devise a facile method of Al doping into the ZnO structure. We report a twostep synthesis route to develop AZO thin films over glass substrates. Sub stoichiometric zinc oxide (ZnOx) thin films were sputter deposited over glass employing RF magnetron sputtering at 70W and 9 x 10-3 Torr Ar pressure. To mitigate Zn losses during annealing at 450 °C, the films were first oxidized up to 200 °C in air so as to convert ZnOx into stoichiometric ZnO. To incorporate Al into the ZnO structure, Al was spin coated on top of ZnO from its stabilized sol of 0.07 molar aluminum nitrate nonahydrate in ethanol. The samples were subsequently annealed at 450 °C for 2h in air with a controlled heating ramp of 3 °C/min. The film morphology, microstructure, electronic, and optical characteristics were explored employing scanning electron microscopy, energy dispersive x-ray spectroscopy, Hall effect measurements, and UV-Vis-NIR spectrophotometry, respectively. We found that both the Al and oxygen (O) content affect the optoelectronic behavior of AZO. Even without Al doping, O deficient samples were found to be sufficiently conductive, however, the ZnOx is less transparent relative to O rich stoichiometric ZnO. Furthermore, if ZnOx is annealed at higher temperatures, it causes Zn losses, since Zn is a relatively high vapor pressure material. It degrades the film morphology as well. Once we have ZnO we can confidently treat it at 450 °C to allow Al diffusion into the interiors of the ZnO film. We found that AZO produced via this method is sufficiently conductive as well as transparent.
Transparent conducting oxides (TCOs) are wide band gap semiconductors having found their use in optoelectronics, flexible electronics, flat panel displays, electrochromic windows, transparent heater windows, and many more. Aluminum (Al) doped zinc oxide (AZO) is an important TCO material which is being widely investigated for such applications. Its optoelectronic properties can be tuned by adjusting the Al content. In this work we study the variation patterns of the electrical conductivity and the optical transparency of AZO thin films with altering the Al content between 0 and 8 at%. The AZO thin films were prepared by wet chemical synthesis from its stabilized sol of zinc acetate dihydrate and aluminum nitrate nonahydrate dissolved in an ethanol and methanol mix. The morphological, electrical, and optical characteristics of these films were explored employing optical microscopy, Hall effect measurements, and UV-Vis-NIR spectrophotometry, respectively. We found out that annealing induces cracks into the AZO thin films and can severely degrade its electrical conductivity. Therefore, it’s imperative to control the Al content as well as the film morphology and structure. Before studying the effects of the Al content, the cracks were mitigated by optimizing the deposition and annealing conditions. The films were spin coated from its sol at 3000 RPM for 30 seconds. The films were dried at 100 °C and were subsequently annealed at 450°C. Since annealing induced cracks, therefore three coats were applied and annealed each time to mitigate the number of transverse cracks across the thickness of the film. The crack minimization was also confirmed by the enhancement in electrical conductivity. For the uniform crack-free AZO films, the Al doping was found to significantly modify the electronic behavior of the films. We expect an initial increase in the conductivity up to around 2 at% Al doping beyond which a decrease in conductivity is expected due to Al2O3 formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.