The pathogenesis of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) infection is unclear, although accumulating evidence indicates that circular RNAs (circRNAs), which act as competing endogenous RNAs or positive regulators, play important roles in regulating gene expression in eukaryotes and, thus, may play a role in BmCPV infections. To explore the expression and biological functions of circRNAs in the silkworm midgut following BmCPV infection, silkworm circRNA expression profiles of normal midgut tissue (control) and BmCPV-infected midgut tissue (test) were determined using high-through sequencing. A total of 9,753 and 7,475circRNAs were detected from the control and test samples, respectively. The two samples shared 6,085 circRNAs, while 646 and 737 circRNAs were expressed specifically in the control and test samples, respectively. A total of 3,638 circRNAs were shown to be differentially expressed, and 400 circRNAs were substantially differentially expressed with a fold-change ≥ 2.0 (p< 0.05 and a false discover rate < 0.05), of which 294 were up-regulated and 106 were down-regulated following infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to determine the principal functions of the substantially differentially regulated genes. circRNA-miRNA interaction networks were constructed based on a correlation analysis between the differentially expressed circRNAs and the nature of their microRNA (miRNA) binding sites. The network inferred that 13 miRNAs interacting with 193 circRNAs were among the 300 most abundant relationships. bmo-miR-3389-5p, bmo-miR-745-3p, and bmo-miR-3262 were related to 30, 34, and 34 circRNAs, respectively. circRNA_8115, circRNA_9444, circRNA_4553, circRNA_0827, and circRNA_6649 contained six, five, four, four, and four miRNA binding sites, respectively. We further found that alternative circularization of circRNAs is a common feature in silkworms and that the junction sites of many silkworm circRNAs are flanked by canonical GT/AG splicing signals. Our study is the first to show the circRNA response to virus infection. Thus, it provides a novel perspective on circRNA-miRNA interactions during BmCPV pathogenesis, and it lays the foundation for future research of the potential roles of circRNAs in BmCPV pathogenesis.
Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV.
Hepatopancreas necrosis disease (HPND) is a disease and serious impacts on the industry of Chinese mitten crabs (Eriocheir sinensis) culture, however the actual cause of this disease is still not known. In the present study, to explore the pathogenic changes and risk factors caused by HPND, ultrathin sections of different tissues from the diseased crabs were observed with transmission electron microscope. The hepatopancreatic cells, spermatogonium, gill tissues and muscle cells of the diseased crabs showed severe structural and morphological changes. To further investigate whether HPND was caused by pathogenic microorganism, the healthy crabs were fed/injected with diseased tissues, the symptoms of HPND were not found, suggesting that HPND was not caused by virus or microsporidian infections. In addition, the toxic effect of avermectin and high pH water were also examined in this study. 40% (p<0.01) crabs with HPND symptoms were found after breeding crabs in water with 9.5 pH to 10 pH for 14 days, but the crabs with no HPND symptoms were found when they were raised in water with different concentrations of avermectin. The results indicated that HPND was not caused by virus or microsporidian and might be induced by water of high pH value or other environmental factors.
The polycistronic and non-canonical gene tarsal-less (tal, known as pri) was reported to be required for embryonic and imaginal development in Drosophila; however, there are few reports of the tal gene in the silkworm Bombyx mori. Here, we cloned a tal-like (Bmtal) gene, and a sequence analysis showed that the Bmtal cDNA (1661 bp) contains five small open reading frames (smORFs) (A1, A2, A3, A4, and B) that encode short peptides of 11-12 (A1-A4) amino acid residues containing an LDPTG(E)L(Q)(V)Y motif that is conserved in Drosophila Tal, as well as a 32-amino-acid B peptide. Reverse transcription-quantitative polymerase chain reaction showed that the expression of the Bmtal gene was highest in the trachea, followed by the silk gland and Malpighian tubule, in day 3 fifth-instar larvae. Subcellular localization showed that BmTal localized in the nucleus. By regulating the expression of the full-length Bmtal gene and the functional smORFs of Bmtal, we showed that the expression levels of the Bmovo gene and genes related to the Notch, transforming growth factor-β, and Hippo signaling pathways changed with changes in BmTal peptide expression. A co-immunoprecipitation assay showed that BmTal interacts with polyubiquitin, which triggered degradation and/or processing of the 14-3-3 protein zeta. A comparative transcriptome analysis showed that 2843 (2045) genes were up- (down)-regulated after Bmtal gene expression was up-regulated. The up- (down)-regulated differentially expressed genes were enriched in 326 (278) gene ontology terms (P ≤ 0.05) and 54 (59) Kyoto Encyclopedia of Genes and Genomes pathways (P ≤ 0.05), and the results indicated that the BmTal peptides could function as mediators of hormone levels or the activities of multiple pathways, including the peroxisome proliferator-activated receptor, Hedgehog, mitogen-activated protein kinase, adipocytokine, and gonadotropin-releasing hormone signaling pathways, as well as the innate immune response. These results increase our understanding of the function and mechanism of BmTal at the genome-wide level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.