Novel bolaamphiphiles consisting of a rigid biphenyl unit, two terminal polar 1,2-diol units and laterally attached (semi)perfluorinated chains have been synthesized via palladium-catalyzed cross coupling reactions as the key step. The thermotropic liquid crystalline behavior of these compounds was investigated by polarized light optical microscopy, DSC, and X-ray scattering, and the influences of the length, number, structure, and position of the lateral chain on the mesomorphic properties were studied. A wide variety of unique liquid crystalline phases were found upon elongation of the lateral semiperfluorinated chains. For short- and medium-chain length a series of columnar phases were observed, and upon further elongation of the lateral chain a series of novel mesophases with layer structures were found. In the columnar phases, the nonpolar lateral chains segregate into columns, which are embedded in honeycomb-like networks of cylinders consisting of the biphenyl units. Strings of hydrogen-bonding networks of the diol groups provide cohesive forces, which maintain the overall structure. Changing the length of the lateral chains influences the diameter of the columns and thus determines the number of biphenyl units which are required to surround these columns. The number of these units [four (c2mm, p4mm), five (p2gg), six (p6mm), eight (c2mm) or 10 (p2gg)] defines the shape of the cylinders as well as the lattice type of the columnar phase. It is proposed that the columnar phases with a p2gg lattice result from the regular organization of pairs of cylinders which have a pentagonal cross sectional shape. In the mesophases with layer structure the aromatic rodlike cores are arranged parallel to the layer planes, and the onset of orientational and positional ordering of the biphenyl segments leads to a sequence of subtypes for these lamellar phases (Lam(Iso)-Lam(N)-Lam(X)).
The existing methods of synthesis of thermoelectric (TE) materials remain constrained to multi-step processes that are time and energy intensive. Here we demonstrate that essentially all compound thermoelectrics can be synthesized in a single-phase form at a minimal cost and on the timescale of seconds using a combustion process called self-propagating high-temperature synthesis. We illustrate this method on Cu2Se and summarize key reaction parameters for other materials. We propose a new empirically based criterion for sustainability of the combustion reaction, where the adiabatic temperature that represents the maximum temperature to which the reacting compact is raised as the combustion wave passes through, must be high enough to melt the lower melting point component. Our work opens a new avenue for ultra-fast, low-cost, large-scale production of TE materials, and provides new insights into combustion process, which greatly broaden the scope of materials that can be successfully synthesized by this technique.
By using aryl-amination chemistry, a series of rodlike 1-phenyl-1H-imidazole-based liquid crystals (LCs) and related imidazolium-based ionic liquid crystals (ILCs) has been prepared. The number and length of the C-terminal chains (at the noncharged end of the rodlike core) and the length of the N-terminal chain (on the imidazolium unit in the ILCs) were modified and the influence of these structural parameters on the mode of self-assembly in LC phases was investigated by polarizing microscopy, differential scanning calorimetry, and X-ray diffraction. For the single-chain imidazole derivatives nematic phases (N) and bilayer SmA2 phases were found, but upon increasing the number of alkyl chains the LC phases were lost. For the related imidazolium salts LC phases were preserved upon increasing the number and length of the C-terminal chains and in this series it leads to the phase sequence SmA-columnar (Col)-micellar cubic (CubI /Pm3n). Elongation of the N-terminal chain gives the reversed sequence. Short N-terminal chains prefer an end-to-end packing of the mesogens in which these chains are separated from the C-terminal chains. Elongation of the N-terminal chain leads to a mixing of N- and C-terminal chains, which is accompanied by complete intercalation of the aromatic cores. In the smectic phases this gives rise to a transition from bilayer (SmA2) to monolayer smectic (SmA) phases. For the columnar and cubic phases the segregated end-to-end packing leads to core-shell aggregates. In this case, elongation of the N-terminal chains distorts core-shell formation and removes CubI and Col phases in favor of single-layer SmA phases. Hence, by tailoring the length of the N-terminal chain, a crossover from taper-shaped to polycatenar LC tectons was achieved, which provides a powerful tool for control of self-assembly in ILCs.
Novel bolaamphiphilic triblockmolecules consisting of a rigid biphenyl unit, with a polar 2,3-dihydroxypropyloxy group and a phenolic OH group at opposite ends, as well as a semiperfluorinated chain in a lateral position have been synthesized via palladium catalyzed cross coupling reactions as the key steps. The thermotropic liquid crystalline behavior of these compounds was investigated by polarized light microscopy, DSC and X-ray scattering, and the influence of the length of the lateral chain on the mesomorphic properties was studied. The compound with the shortest chain as well as the long chain derivatives form lamellar mesophases composed of segregated layers of the bolaamphiphilic moieties and sublayers comprising the fluid lateral chains. The layers within the lamellar phases of the short chain compound adopt a positional correlation, leading to a 2D lattice (Col(r)/p2mm), whereas the layers of the lamellar phases of the long chain derivatives are noncorrelated (Lam). Compounds with a medium chain length organize into columnar phases, where the nonpolar lateral chains segregate into columns, which are embedded in networks of regular (Col(h)) or stretched (Col(r)/c2mm) hexagonal cylinder shells consisting of the bolaamphiphilic units. In total, an unusual phase sequence was found, where, with respect to the chain length, columnar mesophases occur between two mesophases with layer organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.