In this paper, we propose a regularized alternating direction method of multipliers (RADMM) for a class of nonconvex optimization problems. The algorithm does not require the regular term to be strictly convex. Firstly, we prove the global convergence of the algorithm. Secondly, under the condition that the augmented Lagrangian function satisfies the Kurdyka-Łojasiewicz property, the strong convergence of the algorithm is established. Finally, some preliminary numerical results are reported to support the efficiency of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.