Given the importance of pirfenidone as the first worldwide-approved drug for idiopathic pulmonary fibrosis treatment, its pharmacodynamic properties and the metabolic response to pirfenidone treatment have not been fully elucidated. The aim of the present study was to get molecular insights of pirfenidone-related pharmacometabolomic response using MALDI-FTICR-MSI. Quantitative MALDI-FTICR-MSI was carried out for determining the pharmacokinetic properties of pirfenidone and its related metabolites 5-hydroxymethyl pirfenidone and 5-carboxy pirfenidone in lung, liver and kidney. To monitor the effect of pirfenidone administration on endogenous cell metabolism, additional in situ endogenous metabolite imaging was performed in lung tissue sections. While pirfenidone is highly abundant and delocalized across the whole micro-regions of lung, kidney and liver, 5-hydroxymethyl pirfenidone and 5-carboxy pirfenidone demonstrate heterogeneous distribution patterns in lung and kidney. In situ endogenous metabolite imaging study of lung tissue indicates no significant effects of pirfenidone on metabolic pathways. Remarkably, we found 129 discriminative m/z values which represent clear differences between control and treated lungs, the majority of which are currently unknown. PCA analysis and heatmap view can accurately distinguish control and treated groups. This is the first pharmacokinetic study to investigate the tissue distribution of orally administered pirfenidone and its related metabolites simultaneously in organs without labeling. The combination of pharmametabolome with histological features provides detailed mapping of drug effects on metabolism as response of healthy lung tissue to pirfenidone treatment.
Idiopathic pulmonary fibrosis (IPF) is a fatal condition that reduces life expectancy and shows a limited response to available therapies. Pirfenidone has been approved for treatment of IPF, but little is known about the distinct metabolic changes that occur in the lung upon pirfenidone administration.Here, we performed a proof-of-concept study using high-resolution quantitative matrix-assisted laser desorption/ionisation Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI) to simultaneously detect, visualise and quantify endogenous and exogenous metabolites in lungs of mice subjected to experimental fibrosis and human patients with IPF, and to assess the effect of pirfenidone treatment on metabolite levels.Metabolic pathway analysis and endogenous metabolite quantification revealed that pirfenidone treatment restores redox imbalance and glycolysis in IPF tissues, and downregulates ascorbate and aldarate metabolism, thereby likely contributing to modulation of collagen processing. As such, we detected specific alterations in metabolite pathways in fibrosis and, importantly, metabolic recalibration following pirfenidone treatment.Together, these results highlight the suitability of high-resolution MALDI-FTICR-MSI for deciphering the therapeutic effects of pirfenidone and provide a preliminary analysis of the metabolic changes that occur during pirfenidone treatment These data may therefore contribute to improvement of currently available therapies for IPF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.