As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.