In this paper, a sequential quadratically constrained quadratic programming (SQCQP) method for unconstrained minimax problems is presented. At each iteration the SQCQP method solves a subproblem that involves convex quadratic inequality constraints and a convex quadratic objective function. The global convergence of the method is obtained under much weaker conditions without any constraint qualification. Under reasonable assumptions, we prove the strong convergence, superlinearly and quadratic convergence rate.
The alternating direction method of multipliers (ADMM) is an effective method for solving two-block separable convex problems and its convergence is well understood. When either the involved number of blocks is more than two, or there is a nonconvex function, or there is a nonseparable structure, ADMM or its directly extend version may not converge. In this paper, we proposed an ADMM-based algorithm for nonconvex multiblock optimization problems with a nonseparable structure. We show that any cluster point of the iterative sequence generated by the proposed algorithm is a critical point, under mild condition. Furthermore, we establish the strong convergence of the whole sequence, under the condition that the potential function satisfies the Kurdyka–Łojasiewicz property. This provides the theoretical basis for the application of the proposed ADMM in the practice. Finally, we give some preliminary numerical results to show the effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.