Human SP-D is a potent innate immune molecule whose presence at pulmonary mucosal surfaces allows its role in immune surveillance against pathogens. Higher levels of serum SP-D have been reported in the patients with severe acute respiratory syndrome coronavirus (SARS-CoV). Studies have suggested the ability of human SP-D to recognise spike glycoprotein of SARS-CoV; its interaction with HCoV-229E strain leads to viral inhibition in human bronchial epithelial (16HBE) cells. Previous studies have reported that a recombinant fragment of human SP-D (rfhSP-D) composed of 8 Gly-X-Y repeats, neck and CRD region, can act against a range of viral pathogens including influenza A Virus and Respiratory Syncytial Virus in vitro, in vivo and ex vivo. In this context, this study was aimed at examining the likely protective role of rfhSP-D against SARS-CoV-2 infection. rfhSP-D showed a dose-responsive binding to S1 spike protein of SARS-CoV-2 and its receptor binding domain. Importantly, rfhSP-D inhibited interaction of S1 protein with the HEK293T cells overexpressing human angiotensin converting enzyme 2 (hACE2). The protective role of rfhSP-D against SARS-CoV-2 infection as an entry inhibitor was further validated by the use of pseudotyped lentiviral particles expressing SARS-CoV-2 S1 protein; ~0.5 RLU fold reduction in viral entry was seen following treatment with rfhSP-D (10 µg/ml). These results highlight the therapeutic potential of rfhSP-D in SARS-CoV-2 infection and merit pre-clinical studies in animal models.
Probiotics are normal inhabitants of the gastrointestinal tract of man and are widely considered to exert a number of beneficial effects in many diseases. But the mechanism by which they modulate the immune system is poorly understood. The present study was planned to explore the anti-allergic effect of Lactobacillus gasseri on a mouse model of allergic asthma. Dermatophoides pteronyssinus (Der p) sensitised and challenged BALB/c mice were orally administered via oral administration with three different doses of L. gasseri (low, 1 £ 10 6 colony-forming units (CFU); medium, 2 £ 10 6 CFU; high, 4 £ 10 6 CFU), in 700 ml of PBS daily, starting from 2 weeks before Der p sensitisation for 4 weeks. After the allergen challenge, airway responsiveness to methacholine, influx of inflammatory cells to the lung, and cytokine levels in bronchoalveolar lavage (BAL) fluids and splenocytes culture were assessed. Our results showed that oral administration of a high dose of L. gasseri (4 £ 10 6 CFU) decreased airway responsiveness to methacholine, attenuated the influx of inflammatory cells to the airways and reduced the levels of TNF-a, thymus and activation-regulated chemokine (TARC) and IL-17A in BAL fluids of Der p-sensitised and -challenged mice. Moreover, L. gasseri decreased IL-17A production in transforming growth factor-a and IL-6 stimulated splenocytes and cell numbers of IL-17 producing alveolar macrophages in L. gasseri-treated mice as compared to non-treated, Der p-sensitised and -challenged mice. In conclusion, oral administration with L. gasseri can attenuate major characteristics of allergen-induced airway inflammation and IL-17 pro-inflammatory immune response in a mouse model of allergic asthma, which may have clinical implication in the preventive or therapeutic potential in allergic asthma.
Coronavirus is an enveloped RNA virus that causes mild to severe respiratory diseases in humans, including HKU1-CoV, 229E-CoV, NL63-CoV, OC43-CoV, SARS-CoV, MERS-CoV, and SARS-CoV-2. Due to the outbreak of SARS-CoV-2, it is important to identify the patients and investigate their immune responses. Protein microarray is one of the best platforms to profile the antibodies in the blood because of its fast, multiplexed, and sensitive nature. To fully understand the immune responses and biological specificities, this study developed a human coronavirus (HCoV) protein microarray and included all seven human coronaviruses and three influenza viruses. Each protein was printed in triplicate and formed 14 identical blocks per array. The HCoV protein microarray showed high reproducibility and sensitivity to the monoclonal antibodies against spike and nucleocapsid protein with detection limits of 10–200 pg. The HCoV proteins that were immobilized on the array were properly folded and functional by showing interactions with a known human receptor, e.g., ACE2. By profiling the serum IgG and IgA from 32 COVID-19 patients and 36 healthy patients, the HCoV protein microarray demonstrated 97% sensitivity and 97% specificity with two biomarkers. The results also showed the cross-reactivity of IgG and IgA in COVID-19 patients to spike proteins from various coronaviruses, including that from SARS-CoV, HKU1-CoV, and OC43-CoV. Finally, an innate immune protein named surfactant protein D showed broad affinities to spike proteins in all human coronaviruses. Overall, the HCoV protein microarray is multiplexed, sensitive, and specific, which is useful in diagnosis, immune assessment, biological development, and drug screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.