Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease characterized by inflammatory cell activation and the release of inflammatory mediators. Interleukin-33 (IL-33) plays a critical role in various inflammatory and immunological pathologies, but evidence for its role in COPD is lacking. This study aimed to investigate the expression of IL-33 in COPD and to determine whether IL-33 participates in the initiation and progression of COPD. Levels of serum IL-33 and its receptors were measured by ELISA, and serum levels of IL-33, ST2, and IL-1 receptor accessory protein were elevated in patients with COPD compared with control subjects. Flow cytometry analysis further demonstrated an increase in peripheral blood lymphocytes (PBLs) expressing IL-33 in patients with COPD. Immunofluorescence analysis revealed that the main cellular source of IL-33 in lung tissue was human bronchial epithelial cells (HBEs). Cigarette smoke extract and lipopolysaccharide could enhance the ability of PBLs and HBEs to express IL-33. Furthermore, PBLs from patients with COPD showed greater IL-33 release in response to the stimulus. Collectively, these findings suggest that IL-33 expression levels are increased in COPD and related to airway and systemic inflammation. Therefore, IL-33 might contribute to the pathogenesis and progression of this disease.
Abstract-We present a unified framework for grasp planning and in-hand grasp adaptation using visual, tactile and proprioceptive feedback. The main objective of the proposed framework is to enable fingertip grasping by addressing problems of changed weight of the object, slippage and external disturbances. For this purpose, we introduce the Hierarchical Fingertip Space (HFTS) as a representation enabling optimization for both efficient grasp synthesis and online finger gaiting. Grasp synthesis is followed by a grasp adaptation step that consists of both grasp force adaptation through impedance control and regrasping/finger gaiting when the former is not sufficient. Experimental evaluation is conducted on an Allegro hand mounted on a Kuka LWR arm.
Abstract-To perform robust grasping, a multi-fingered robotic hand should be able to adapt its grasping configuration, i.e., how the object is grasped, to maintain the stability of the grasp. Such a change of grasp configuration is called grasp adaptation and it depends on the controller, the employed sensory feedback and the type of uncertainties inherit to the problem. This paper proposes a grasp adaptation strategy to deal with uncertainties about physical properties of objects, such as the object weight and the friction at the contact points. Based on an object-level impedance controller, a grasp stability estimator is first learned in the object frame. Once a grasp is predicted to be unstable by the stability estimator, a grasp adaptation strategy is triggered according to the similarity between the new grasp and the training examples. Experimental results demonstrate that our method improves the grasping performance on novel objects with different physical properties from those used for training.
Engineering heterogeneous composite electrodes consisting of multiple active components for meeting various electrochemical and structural demands have proven indispensable for significantly boosting the performance of lithium‐ion batteries (LIBs). Here, a novel design of ZnS/Sn heterostructures with rich phase boundaries concurrently encapsulated into hierarchical interconnected porous nitrogen‐doped carbon frameworks (ZnS/Sn@NPC) working as superior anode for LIBs, is showcased. These ZnS/Sn@NPC heterostructures with abundant heterointerfaces, a unique interconnected porous architecture, as well as a highly conductive N‐doped C matrix can provide plentiful Li+‐storage active sites, facilitate charge transfer, and reinforce the structural stability. Accordingly, the as‐fabricated ZnS/Sn@NPC anode for LIBs has achieved a high reversible capacity (769 mAh g−1, 150 cycles at 0.1 A g−1), high‐rate capability and long cycling stability (600 cycles, 645.3 mAh g−1 at 1 A g−1, 92.3% capacity retention). By integrating in situ/ex situ microscopic and spectroscopic characterizations with theoretical simulations, a multiscale and in‐depth fundamental understanding of underlying reaction mechanisms and origins of enhanced performance of ZnS/Sn@NPC is explicitly elucidated. Furthermore, a full cell assembled with prelithiated ZnS/Sn@NPC anode and LiFePO4 cathode displays superior rate and cycling performance. This work highlights the significance of chemical heterointerface engineering in rationally designing high‐performance electrodes for LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.