Wound healing is a complex but well-orchestrated tissue repair process composed of a series of molecular and cellular events conducted by various types of cells and extracellular matrix. Despite a variety of therapeutic strategies proposed to accelerate the healing of acute and/or chronic wounds over the past few decades, effective treatment of chronic nonhealing wounds still remains a challenge. Due to the recent advances in stem cell research, a dramatic enthusiasm has been drawn to the application of stem cells in regenerative medicine. Both embryonic and adult stem cells have prolonged self-renewal capacity and are able to differentiate into various tissue types. Nevertheless, use of embryonic stem cells is limited, owing to ethical concerns and legal restrictions. Adult stem cells, which could be isolated from bone marrow, umbilical cord blood, adipose tissue, skin and hair follicles,are being explored extensively to facilitate the healing of both acute and chronic wounds. The current article summarizes recent research on various types of stem cell-based strategies applied to improve wound healing. In addition, future directions of stem cell-based therapy in wound healing have also been discussed. Finally, despite its apparent advantages, limitations and challenges of stem cell therapy are discussed.
Hypoxia-inducible factor (HIF)-1alpha is a key regulator of anaerobic energy metabolism. We asked the following question: Does the breakdown of microtubular structures influence glycolysis in hypoxic cardiomyocytes by regulating HIF-1alpha? Neonatal rat cardiomyocytes were cultured under hypoxic conditions, while microtubule-stabilizing (paclitaxel) and -depolymerizing (colchicine) agents were used to change microtubular structure. Models of high microtubule-associated protein 4 (MAP4) expression and RNA interference of microtubulin expression were established. Microtubular structural changes and intracellular HIF-1alpha protein distribution were observed with laser confocal scanning microscopy. Content of key glycolytic enzymes, viability, and energy content of cardiomyocytes were determined by colorimetry and high-performance liquid chromatography. HIF-1alpha protein content and mRNA expression were determined by Western blotting and real-time PCR, respectively. Low doses of microtubule-stabilizing agent (10 mumol/l paclitaxel) and enhanced expression of MAP4 stabilized the reticular microtubular structures in hypoxic cardiomyocytes, increased the content of key glycolytic enzymes, ameliorated energy supply and enhanced cell viability, and upregulated HIF-1alpha protein expression and endonuclear aggregation. In contrast, the microtubule-depolymerizing agent (10 mumol/l colchicine) or reduced microtubulin expression had adverse affects on the same parameters, in particular, HIF-1alpha protein content and endonuclear aggregation. We conclude that microtubular structural changes influence glycolysis in the early stages of hypoxia in cardiomyocytes by regulating HIF-1alpha content. Stabilizing microtubular structures increases endonuclear and total HIF-1alpha expression, content of key glycolytic enzymes, and energy supply. These findings provide potential therapeutic targets for ameliorating cell energy metabolism during early myocardial hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.