Background Recurrent painful ophthalmoplegic neuropathy (RPON) is an uncommon disorder characterized by recurrent unilateral headache attacks associated with ipsilateral ophthalmoplegia. We intend to study the clinical picture in our case series along with the published literature to discuss the pathogenesis and propose modified diagnostic criteria for recurrent painful ophthalmoplegic neuropathy. Methods We reported five cases diagnosed as ophthalmoplegic migraine/RPON in our medical centers and reviewed the published literature related to RPON from the Pubmed database between 2000 and 2020. In one of these cases, a multiplanar reformation was performed to look at the aberrant cranial nerve. Results The mean onset age for RPON was 22.1 years, and the oculomotor nerve was the most commonly involved cranial nerve (53.9%) in 165 reviewed patients. In most patients, ophthalmoplegia started within 1 week of the headache attack (95.7%, 67/70). Additionally, 27.6% (40/145) of patients presented enhancement of the involved nerve(s) from MRI tests. Finally, 78 patients received corticosteroids, out of which 96.2% benefited from them. Conclusion This is the first time multiplanar reformation has been performed to reveal the distortion of the oculomotor nerve. Modified diagnostic criteria are proposed. We hope to expand the current knowledge and increase the detection of recurrent painful ophthalmoplegic neuropathy in the future.
Background: Tumor mutational burden (TMB) is a genomic biomarker that can predict favorable responses to immune checkpoint inhibitors (ICIs). Although we have better understanding of TMB in cancer immunity and cancer immunotherapy, the relationship between TMB and the clinical efficacy of ICIs remains unknown in the treatment of melanoma patients. Here, we conduct a systematic review and meta-analysis to evaluate the predictive value of TMB on the efficacy of ICIs in patients with melanoma.Methods: We systematically collected data from PubMed, Embase, Cochrane Library, CNKI, China Biomedical Database (CBM), and Wanfang Database. The end date was set to 26 June 2021. We included retrospective studies or clinical trials of ICIs that reported hazard ratios (HRs) for overall survival and/or progression-free survival according to TMB. Data for 1,493 patients from 15 studies were included. In addition, pooled effect size, heterogeneity analysis, sensitivity analysis, publication bias detection, and subgroup analysis were performed based on the included data.Results: Patients with high TMB showed significantly improved OS (HR = 0.49, 95% CI: 0.33, 0.73; p = 0.001) and PFS (HR = 0.47, 95% CI: 0.33, 0.68; p < 0.001) compared with patients with low TMB. This association was very good in patients treated with monotherapy, that is, anti-CTLA-4 or anti-PD-(L)-1 inhibitors, but not for the patients treated with a combination of the two drugs. The subgroup analysis results showed that heterogeneity was substantial in the targeted next-generation sequencing (NGS) group. Publication bias was detected, and the results were visualized using the funnel chart. And sensitivity analysis and trim-and-fill method analysis showed that our results were stable and reliable.Conclusion: High TMB is associated with improved OS and PFS in melanoma patients treated with mono-drug ICIs. TMB determined by NGS should be standardized to eliminate heterogeneity. Therefore, the role of TMB in identifying melanoma patients who may benefit from ICI should be further determined in more randomized controlled trials in the future.
Prenatal stress can result in various behavior deficits in offspring. Here we tested the effects of environmental enrichment during gestation used as a preventive strategy on the behavior deficits of prenatal-stressed offspring rats as well as the underlying structure basis. We compared the effect size of environmental enrichment during gestation on prenatal-stressed offspring to that of environmental enrichment after weaning. Our results showed that environmental enrichment during gestation partially prevented anxiety and the damage in learning and memory in prenatal-stressed offspring as evaluated by elevated plus-maze test and Morris water maze test. At the same time, environmental enrichment during gestation inhibited the decrease in spine density of CA1 and dentate gyrus neurons and preserved the expression of synaptophysin and glucocorticoid receptors (GRs) in the hippocampus of prenatal-stressed offspring. There was no significant difference in offspring behavior between 7-day environmental enrichment during gestation and 14-day offspring environmental enrichment after weaning. These data suggest that environmental enrichment during gestation effectively prevented the behavior deficits and the abnormal synapse structures in prenatal-stressed offspring, and that it can be used as an efficient preventive strategy against prenatal stresses.
Radiotherapy is used to treat gastric cancer (GC); however, radioresistance challenges the clinical outcomes of GC, and the mechanisms of radioresistance in GC remain poorly understood. Here, we report that the TGF-β receptor inhibitor, LY2109761 (LY), is a potential radiosensitizer both in vitro and in vivo. As per the Cancer Genome Atlas database, TGF-β overexpression is significantly related to poor overall survival in GC patients. We demonstrated that the TGF-β/SMAD4 signaling pathway was activated in both radioresistant GC cells and radioresistant GC patients. As a TGF-β receptor inhibitor, LY can enhance the activities of irradiation by inhibiting cell proliferation, decreasing clonogenicity and increasing apoptosis. Moreover, LY attenuated the radiation-induced migration and invasion, epithelial-mesenchymal transition (EMT), inflammatory factor activation, immunosuppression, and cancer stem cell characteristics of GC cells, thus leading to radiosensitization of the GC cells. We confirmed that LY reduced tumor growth, inhibited TGF-β/SMAD4 pathway activation and reversed irradiation-induced EMT in a tumor xenograft model. Our findings indicate that the novel TGF-β receptor inhibitor, LY, increases GC radiosensitivity by directly regulating the TGF-β/SMAD4 signaling pathway. These findings provide new insight for radiotherapy in GC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.