Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice.
The role of persistent activation of pancreatic stellate cells (PSCs) in the fibrosis associated with chronic pancreatitis (CP) is increasingly being recognized. Recent studies have shown that Wnt signaling is involved in the development of fibrosis in multiple organs, however, the role of specific Wnts in pancreatic fibrosis remains unknown. We investigated the role of Wnt signaling during PSC activation in CP and the effect of β-catenin inhibition and Dickkopf-related protein 1 (Dkk1) restoration on the phenotype of PSCs. CP was induced in mice by repetitive caerulein injection and mouse PSCs were isolated and activated in vitro. The expression of Wnts, β-catenin, secreted frizzled-related proteins (sFRPs) and Dkks was analyzed by quantitative RT-PCR and western blotting. The canonical Wnt signaling pathway was examined by immunofluorescence and western blot detection of nuclear β-catenin expression. The effect of recombinant mouse Dkk-1 (rmDkk-1) on cell proliferation and apoptosis was assessed by flow cytometry, immunofluorescence, immunocytochemistry and Cell Counting Kit-8 (CCK-8) analysis. The expression of β-catenin, collagen1α1, TGFβRII, PDGFRβ and α-SMA in PSCs treated with different concentrations of rmDkk-1 or siRNA against β-catenin was determined by quantitative RT-PCR and western blotting. Wnt2 was the only Wnt whose expression was significantly upregulated in response to PSC activation, and Wnt2 and β-catenin protein levels were significantly increased in the pancreas of CP mice, whereas Dkk-1 expression was evidently decreased. Nuclear β-catenin levels were markedly increased in activated PSCs, and rmDkk-1 suppressed the nuclear translocation of β-catenin and the proliferation and extracellular matrix production of PSCs through the downregulation of PDGFRβ and TGFβRII. Upregulation of Dkk-1 expression increased apoptosis in cultured PSCs. These results indicate that Wnt signaling may mediate the profibrotic effect of PSC activation, and Wnt2/Dkk-1 could be potential therapeutic targets for CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.