In this paper, a hybrid fault-tolerant control method with off-line design and online scheduling is proposed for NCS with actuator faults, random delay, and external finite energy disturbance. The problem of less conservatism of robust generalized H2/H∞ hybrid fault-tolerant control is studied. Firstly, a closed-loop fault model of the system with random delay parameters was established according to the Bernoulli 0-1 distribution; all possible prior faults are divided into a few intervals according to certain rules, and then an interval fault-tolerant controller is designed off-line according to the prior faults of each interval. Secondly, when the fault is estimated online, the corresponding interval fault-tolerant controller is called through the scheduling mechanism to achieve rapid fault tolerance of prior faults within the interval and mitigate the impact of other faults within the interval, which provides a guarantee for subsequent safe reconstruction control. Finally, the effectiveness of the proposed method is verified by Matlab simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.