Abstract. This paper presents an approach for breast cancer diagnosis in digital mammogram using multiresolution and multiscale geometric analysis. The proposed method consists of two stages. In the first stage, mammogram images are decomposed into different resolution levels using wavelet transform and curvelet transform, which are sensitive to different frequency bands. A set of the biggest coefficients from each decomposition level is extracted as features vector. In the second stage, classification is performed on a weighted support vector machine (SVM). Due to random selection of samples, it is highly probable that a significantly small portion of the training set is the "mass present" class. To address this problem, we propose to use weighted SVM in a successive enhancement learning scheme to examine all the available "mass present" samples. The proposed approach is applied to the Mammograms Image Analysis Society dataset (MIAS) and classification accuracy of 99.3% is determined over an efficient computation time by successive learning enhancement. Experiment results illustrate that the multiresolution and multiscale geometric analysis-based feature extraction in conjunction with the state-of-art classifier construct a powerful, efficient and practical approach for breast cancer diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.