A novel influenza A (H7N9) virus of avian origin emerged in eastern China in the spring of 2013. This virus causes severe disease in humans, including acute and often lethal respiratory failure. As of January 2014, 275 cases of H7N9-infected patients had been reported, highlighting the urgency of identifying biomarkers for predicting disease severity and fatal outcomes. Here, we show that plasma levels of angiotensin II, a major regulatory peptide of the renin-angiotensin system, are markedly elevated in H7N9 patients and are associated with disease progression. Moreover, the sustained high levels of angiotensin II in these patients are strongly correlated with mortality. The predictive value of angiotensin II is higher than that of C-reactive protein and some clinical parameters such as the PaO 2 /FiO 2 ratio (partial pressure of arterial oxygen to the fraction of inspired oxygen). Our findings indicate that angiotensin II is a biomarker for lethality in flu infections.
Patients with NSCLC and EGFR exon 19 deletion had a longer PFS, OS and higher response rates after EGFR-TKI therapy compared with exon 21 L858R mutation.
Purpose
Breast cancer is the most frequently diagnosed malignancy in women worldwide. MicroRNAs (miRNAs) are thought to serve as potential biomarkers in various cancers, including breast cancer.
Methods
We evaluated the miRNA expression profiles in 1,083 breast cancer samples and 104 normal breast tissues from The Cancer Genome Atlas database. We used the edgeR package of R software to analyze the differentially expressed miRNAs in normal and cancer tissues, and screened survival-related miRNAs by Kaplan-Meier analysis. A receiver operating characteristic curve was generated to evaluate the accuracy of these miRNAs as molecular markers for breast cancer diagnosis. Furthermore, the functional role of these miRNAs was verified using cell experiments. Targets of candidate miRNAs were predicted using 9 online databases, and Gene Ontology (GO) functional annotation and pathway analyses were conducted using Database for Annotation, Visualization and Integrated Discovery online tool.
Results
A total of 68 miRNAs showed significantly different expression patterns between the groups (
p
< 0.001), and 13 of these miRNAs were significantly associated with poor survival (
p
< 0.05). Three miRNAs with high specificity and sensitivity, namely, miR-148b-3p, miR-190b, and miR-429, were selected.
In vitro
experiments showed that the overexpression of these 3 miRNAs significantly promoted the proliferation and migration of MDA-MB-468 and T47D cells and reduced the apoptosis of T47D cells. GO and pathway enrichment analyses revealed that the targets of these dysregulated miRNAs were involved in many critical cancer-related biological processes and pathways.
Conclusion
The miR-148b-3p, miR-190b, and miR-429 may serve as potential diagnostic and prognostic markers for breast cancer. This study demonstrated the roles of these 3 miRNAs in the initiation and progression of breast cancer.
As a recycling center, lysosomes are filled with numerous acid hydrolase enzymes that break down waste materials and invading pathogens. Recently, lysosomal cell death has been defined as "lysosomal membrane permeabilization and the consequent leakage of lysosome contents into cytosol." Here, we show that the neuraminidase (NA) of H5N1 influenza A virus markedly deglycosylates and degrades lysosome-associated membrane proteins (LAMPs; the most abundant membrane proteins of lysosome), which induces lysosomal rupture, and finally leads to cell death of alveolar epithelial carcinoma A549 cells and human tracheal epithelial cells. The NA inhibitors peramivir and zanamivir could effectively block the deglycosylation of LAMPs, inhibit the virus cell entry, and prevent cell death induced by the H5N1 influenza virus. The NA of seasonal H1N1 virus, however, does not share these characteristics. Our findings not only reveal a novel role of NA in the early stage of the H5N1 influenza virus life cycle but also elucidate the molecular mechanism of lysosomal rupture crucial for influenza virus induced cell death.
IMPORTANCEThe integrity of lysosomes is vital for maintaining cell homeostasis, cellular defense and clearance of invading pathogens. This study shows that the H5N1 influenza virus could induce lysosomal rupture through deglycosylating lysosome-associated membrane proteins (LAMPs) mediated by the neuraminidase activity of NA protein. NA inhibitors such as peramivir and zanamivir could inhibit the deglycosylation of LAMPs and protect lysosomes, which also further interferes with the H5N1 influenza virus infection at early stage of life cycle. This work is significant because it presents new concepts for NA's function, as well as for influenza inhibitors' mechanism of action, and could partially explain the high mortality and high viral load after H5N1 virus infection in human beings and why NA inhibitors have more potent therapeutic effects for lethal avian influenza virus infections at early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.