In this paper, Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation. First of all, the interpolation basis function is applied to treat the spatial variables and their partial derivatives, and the collocation method for solving the second order di erential equations is established. Secondly, the di erential matrix is used to simplify the given di erential equations on a given test node. Finally, based on three kinds of test nodes, numerical experiments show that the present scheme can not only calculate the high wave numbers problems, but also calculate the variable wave numbers problems. In addition, the algorithm has the advantages of high calculation accuracy, good numerical stability and less time consuming.
In the work, a numerical method of the 2D Helmholtz equation with meshless interpolation collocation method is developed, which is defined in arbitrary domain with irregular shape. In our numerical method, based on the Chebyshev points, the partial derivatives and the spatial variables are discretized by the barycentric rational form basis function. After that the differential equations are simplified by employing differential matrix. To verify the the accuracy, effectiveness and stability in our method, some numerical tests based on the three types of different test points are adopted. Moreover, we can also verify that present method can be applied to both variable wave number problems and high wave number problems.
In this paper, we developed a meshless collocation method by using barycentric rational interpolation basis function based on the Chebyshev to deduce the scheme for solving the Helmholtz equation defined in arbitrary domain with complex boundary shapes. Firstly, the spatial variables and their partial derivatives are treated by interpolation basis functions, and the collocation method for solving second order differential equations is established. Then the differential matrix is used to simplify the differential equations on a given test node. Finally, numerical experiments based on three kinds of test nodes show that the proposed method can be used to calculate not only the high wave numbers problems, but also the variable wave numbers problems. Moreover, the algorithm has the advantages of high calculation accuracy, good numerical stability and the less CPU time consuming.
PurposeThis meshless collocation method is applicable not only to the Helmholtz equation with Dirichlet boundary condition but also mixed boundary conditions. It can calculate not only the high wavenumber problems, but also the variable wave number problems.Design/methodology/approachIn this paper, the authors developed a meshless collocation method by using barycentric Lagrange interpolation basis function based on the Chebyshev nodes to deduce the scheme for solving the three-dimensional Helmholtz equation. First, the spatial variables and their partial derivatives are treated by interpolation basis functions, and the collocation method is established for solving second order differential equations. Then the differential matrix is employed to simplify the differential equations which is on a given test node. Finally, numerical experiments show the accuracy and effectiveness of the proposed method.FindingsThe numerical experiments show the advantages of the present method, such as less number of collocation nodes needed, shorter calculation time, higher precision, smaller error and higher efficiency. What is more, the numerical solutions agree well with the exact solutions.Research limitations/implicationsCompared with finite element method, finite difference method and other traditional numerical methods based on grid solution, meshless method can reduce or eliminate the dependence on grid and make the numerical implementation more flexible.Practical implicationsThe Helmholtz equation has a wide application background in many fields, such as physics, mechanics, engineering and so on.Originality/valueThis meshless method is first time applied for solving the 3D Helmholtz equation. What is more the present work not only gives the relationship of interpolation nodes but also the test nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.