BackgroundPrevious voxel-based morphometric (VBM) and functional magnetic resonance imaging (fMRI) studies have shown changes in brain structure and function in cocaine addiction (CD) patients compared to healthy controls (HC). However, the results of these studies are poorly reproducible, and it is unclear whether there are common and specific neuroimaging changes. This meta-analysis study aimed to identify structural, functional, and multimodal abnormalities in CD patients.MethodsThe PubMed database was searched for VBM and task-state fMRI studies performed in CD patients between January 1, 2010, and December 31, 2021, using the SEED-BASE d MAP software package to perform two independent meta-groups of functional neural activation and gray matter volume, respectively. Analysis, followed by multimodal analysis to uncover structural, functional, and multimodal abnormalities between CD and HC.ResultsThe meta-analysis included 14 CD fMRI studies (400 CD patients and 387 HCs) and 11 CD VBM studies (368 CD patients and 387 controls). Structurally, VBM analysis revealed significantly lower gray matter volumes in the right superior temporal gyrus, right insula, and right retrocentral gyrus than in the HC. On the other hand, the right inferior parietal gyrus increased in gray matter (GM) volume in CD patients. Functionally, fMRI analysis revealed activation in the right temporal pole, right insula, and right parahippocampal gyrus. In the right inferior parietal gyrus, the left inferior parietal gyrus, the left middle occipital gyrus, and the right middle frontal gyrus, the degree of activation was lower.ConclusionThis meta-analysis showed that CD patients had significant brain GM and neural changes compared with normal controls. Furthermore, multi-domain assessments capture different aspects of neuronal alterations in CD, which may help develop effective interventions for specific functions.
BackgroundA large and growing body of neuroimaging research has concentrated on patients with attention-deficit/hyperactivity disorder (ADHD), but with inconsistent conclusions. This article was intended to investigate the common and certain neural alterations in the structure and function of the brain in patients with ADHD and further explore the differences in brain alterations between adults and children with ADHD.MethodsWe conducted an extensive literature search of whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies associated with ADHD. Two separate meta-analyses with the seed-based d mapping software package for functional neural activation and gray matter volume (GMV) were carried out, followed by a joint analysis and a subgroup analysis.ResultsThis analysis included 29 VBM studies and 36 fMRI studies. Structurally, VBM analysis showed that the largest GMV diminutions in patients with ADHD were in several frontal-parietal brain regions, the limbic system, and the corpus callosum. Functionally, fMRI analysis discovered significant hypoactivation in several frontal-temporal brain regions, the right postcentral gyrus, the left insula, and the corpus callosum.ConclusionThis study showed that abnormal alterations in the structure and function of the left superior frontal gyrus and the corpus callosum may be the key brain regions involved in the pathogenesis of ADHD in patients and may be employed as an imaging metric for patients with ADHD pending future research. In addition, this meta-analysis discovered neuroanatomical or functional abnormalities in other brain regions in patients with ADHD as well as findings that can be utilized to guide future research.
BackgroundMany neuroimaging studies have reported abnormalities in brain structure and function in internet gaming disorder (IGD). However, the findings were divergent. We aimed to provide evidence-based evidence of structural and functional changes in IGD by conducting a meta-analysis integrating these studies quantitatively.MethodA systematic search was conducted in PubMed, ScienceDirect, Web of Science, and Scopus from January 1, 2010 to October 31, 2021, to identify eligible voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies. Brain alternations between IGD subjects and healthy controls (HCs) were compared using the anisotropic seed-based d mapping (AES-SDM) meta-analytic method. Meta-regression analysis was used to investigate the relationship between gray matter volume (GMV) alterations and addiction-related clinical features.ResultsThe meta-analysis contained 15 VBM studies (422 IGD patients and 354 HCs) and 30 task-state fMRI studies (617 IGD patients and 550 HCs). Compared with HCs, IGD subjects showed: (1) reduced GMV in the bilateral anterior/median cingulate cortex, superior/inferior frontal gyrus and supplementary motor area; (2) hyperactivation in the bilateral inferior frontal gyrus, precentral gyrus, left precuneus, right inferior temporal gyrus and right fusiform; (3) hypoactivation in the bilateral lingual and the left middle frontal gyrus; and (4) both decreased GMV and increased activation in the left anterior cingulate. Furthermore, Meta-regression revealed that GMV reduction in left anterior cingulate were positively correlated with BIS-11 score [r = 0.725, p = 0.012(uncorrected)] and IAT score [r = 0.761, p = 0.017(uncorrected)].ConclusionThis meta-analysis showed structural and functional impairments in brain regions related to executive control, cognitive function and reward-based decision making in IGD. Furthermore, multi-domain assessments captured different aspects of neuronal changes in IGD, which may help develop effective interventions as potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.