Objectives To explore the diagnostic value of radiomics in differentiating between lung adenocarcinomas appearing as ground‐glass opacity nodules (GGO) with high‐ and low Ki‐67 expression levels. Materials and Methods From January 2018 to January 2021, patients with pulmonary GGO who received lung resection were evaluated for potential enrollment. The included GGOs were then randomly divided into a training cohort and a validation cohort with a ratio of 7:3. Logistic regression (LR), decision tree (DT), support vector machines (SVM), and adaboost (AB) were applied for radiomic model construction. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the established models. Results Seven hundred and sixty‐nine patients with 769 GGOs were included in this study. Two hundred and forty‐five GGOs were confirmed to be of high Ki‐67 labeling index (LI). In the training cohort, gender, age, spiculation sign, pleural indentation sign, bubble sign, and maximum 2D diameter of the nodule were found to be significantly different between high‐ and low Ki‐67 LI groups (p < 0.05), and spiculation sign and maximum 2D diameter of the nodule were further confirmed to be risk factors for Ki‐67 LI. The radiomic model established using SVM exhibited an AUC of 0.731 in the validation cohort, which was higher than that of the clinical‐radiographic model (AUC = 0.675). Moreover, radiomic model combining both intra‐ and peri‐nodular features showed better diagnostic efficacy than using intra‐nodular features alone (AUC = 0.731 and 0.720, respectively). Conclusions The established radiomic model exhibited good diagnostic efficacy in differentiating between lung adenocarcinoma GGOs with high and low Ki‐67 LI, which was higher than the clinical‐radiographic model. Peri‐nodular radiomic features showed added benefits to the radiomic model. As a novel noninvasive method, radiomics have the potential to be applied in the preliminary classification of Ki‐67 expression level in lung adenocarcinoma GGOs.
Background Clinically differentiating preinvasive lesions (atypical adenomatous hyperplasia, AAH and adenocarcinoma in situ, AIS) from invasive lesions (minimally invasive adenocarcinomas, MIA and invasive adenocarcinoma, IA) manifesting as ground-glass opacity nodules (GGOs) is difficult due to overlap of morphological features. Hence, the current study was performed to explore the diagnostic efficiency of radiomics in assessing the invasiveness of lung adenocarcinoma manifesting as GGOs. Methods A total of 1018 GGOs pathologically confirmed as lung adenocarcinoma were enrolled in this retrospective study and were randomly divided into a training set (n = 712) and validation set (n = 306). The nodules were delineated manually and 2446 intra-nodular and peri-nodular radiomic features were extracted. Univariate analysis and least absolute shrinkage and selection operator (LASSO) were used for feature selection. Clinical and semantic computerized tomography (CT) feature model, radiomic model and a combined nomogram were constructed and compared. Decision curve analysis (DCA) was used to evaluate the clinical value of the established nomogram. Results 16 radiomic features were selected and used for model construction. The radiomic model exhibited significantly better performance (AUC = 0.828) comparing to the clinical-semantic model (AUC = 0.746). Further analysis revealed that peri-nodular radiomic features were useful in differentiating between preinvasive and invasive lung adenocarcinomas appearing as GGOs with an AUC of 0.808. A nomogram based on lobulation sign and radiomic features showed the best performance (AUC = 0.835), and was found to have potential clinical value in assessing nodule invasiveness. Conclusions Radiomic model based on both intra-nodular and peri-nodular features showed good performance in differentiating between preinvasive lung adenocarcinoma lesions and invasive ones appearing as GGOs, and a nomogram based on clinical, semantic and radiomic features could provide clinicians with added information in nodule management and preoperative evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.