Kawalan jitu dan lasak bagi satu sistem lengan robot atau pengolah adalah amat penting terutama sekali jika sistem mengalami pelbagai bentuk bebanan dan keadaan pengendalian. Kertas kerja ini memaparkan satu kaedah baru dan lasak untuk mengawal lengan robot menggunakan teknik pembelajaran secara berlelaran yang dimuatkan dalam strategi kawalan daya aktif. Sebanyak dua algoritma pembelajaran utama digunakan dalam kajian – yang pertama digunakan untuk menala gandaan pengawal secara automatik manakala yang satu lagi pula untuk menganggarkan matriks inersia pengolah. Kedua-dua parameter ini dihasilkan secara adaptif dan dalam talian ketika robot sedang menjalankan tugas menjejak trajektori dalam persekitaran tindakan daya gangguan. Dalam kajian ini, pengetahuan awal tentang kedua–dua nilai gandaan pengawal dan anggaran matriks inersia tidak wujud. Dengan demikian, suatu skema kawalan yang jitu dan lasak terhasil. Keberkesanan kaedah yang dicadangkan dapat ditentusahkan melalui hasil kajian yang diperoleh dan dibentangkan dalam kertas kerja ini. Kata kunci: Adaptif; kawalan daya aktif; pembelajaran berlelaran; matriks inersia; gandaan pengawal The robust and accurate control of a robotic arm or manipulator are of prime importance especially if the system is subjected to varying forms of loading and operating conditions. The paper highlights a novel and robust method to control a robotic arm using an iterative learning technique embedded in an active force control strategy. Two main iterative learning algorithms are utilized in the study – the first is used to automatically tune the controller gains while the second to estimate the inertia matrix of the manipulator. These parameters are adaptively computed on-line while the robot is executing a trajectory tracking task and subject to some forms of external disturbances. No priori knowledge of both the controller gains and the estimated inertia matrix are ever assumed in the study. In this way, an adaptive and robust control scheme is derived. The effectiveness of the method is verified and can be seen from the results of the work presented in this paper. Keywords: Adaptive; active force control; iterative learning; inertia matrix; controller gain
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.