It was shown in [15,16] that there does not exist any warped product submanifold of a Kaehler manifold such that the spherical manifold of the warped product is proper slant. In this paper, we introduce the notion of warped product submanifolds with a slant function. We show that there exists a class of nontrivial warped product submanifolds of a Kaehler manifold such that the spherical manifold is pointwise slant by giving an example and a characterization theorem. We also prove that if the warped product is mixed totally geodesic then the warping function is constant.
We introduce a special kind of almost geodesic mappings of the first type π * 1 of spaces with non-symmetric affine connections. Also, we investigate a special class of equitorsion almost geodesic mappings of type π * 1 and find some invariant geometric objects of these mappings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.