In order to avoid voltage problems derived from the connection of large amounts of renewable-based generation to the electrical distribution system, new advanced tools need to be developed that are able to exploit the presence of Distributed Energy Resources (DER). This paper describes the approach proposed for a predictive voltage control algorithm to be used in Low Voltage (LV) distribution networks in order to make use of available flexibilities from domestic consumers via their Home Energy Management System (HEMS) and more traditional resources from the Distribution System Operator (DSO), such as transformers with On-Load Tap Changer (OLTC) and storage devices. The proposed algorithm—the Low Voltage Control (LVC)—is detailed in this paper. The algorithm was tested through simulation using a real Portuguese LV network and real consumption and generation data, in order to evaluate its performance in preparation for a field-trial validation in a Portuguese smart grids pilot.
In order to avoid voltage problems derived from the connection of large amounts of renewable-based energy generation to distribution networks, new advanced tools need to be developed that are able to exploit the presence of Distributed Energy Resources (DER). This paper describes the approach proposed for a predictive voltage control algorithm to be used in LV distribution networks in order to make use of available flexibilities from domestic consumers via their Home Energy Management System (HEMS) and more traditional Distribution System Operator's (DSO's) resources, such as transformers with On-Load Tap Changer (OLTC) and storage devices. The proposed algorithm for the Low Voltage Control (LVC) is detailed in this paper. The algorithm was then tested through simulation using a representative Portuguese Low Voltage (LV) network in order to assess its performance in several future scenarios with different operating conditions. The future prospects for field-trial validation in a Portuguese smart grids pilot are also discussed.
The evolution of the electrical power sector due to the advances in digitalization, decarbonization and decentralization has led to the increase in challenges within the current distribution network. Therefore, there is an increased need to analyze the impact of the smart grid and its implemented solutions in order to address these challenges at the earliest stage, i.e., during the pilot phase and before large-scale deployment and mass adoption. Therefore, this paper presents the scalability and replicability analysis conducted within the European project InteGrid. Within the project, innovative solutions are proposed and tested in real demonstration sites (Portugal, Slovenia, and Sweden) to enable the DSO as a market facilitator and to assess the impact of the scalability and replicability of these solutions when integrated into the network. The analysis presents a total of three clusters where the impact of several integrated smart tools is analyzed alongside future large scale scenarios. These large scale scenarios envision significant penetration of distributed energy resources, increased network dimensions, large pools of flexibility, and prosumers. The replicability is analyzed through different types of networks, locations (country-wise), or time (daily). In addition, a simple replication path based on a step by step approach is proposed as a guideline to replicate the smart functions associated with each of the clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.