BACKGROUND Ripened cheeses, such as pecorino, are susceptible to mites and molds contamination on the crust area that must be removed before the product can be marketed. This study investigates the effectiveness of gaseous ozone treatment in the control of microbiological and mite growth without negatively affecting product quality. RESULTS Cheese samples were treated with gaseous ozone at 200 and 300 ppb for 8 h per day (overnight) for 150 days in storage rooms under controlled conditions (12 °C and 85% relative humidity). The results showed that ozone at 200 ppb limits the growth of mites starting from 25 days of storage and significantly reduced bacteria, molds, and yeasts counts starting from 75 days of storage. Concerning the physicochemical and qualitative parameters evaluated during ripening (weight loss, moisture content, dry weight, ash, fat, protein, total nitrogen, color, non‐destructive firmness), no significant differences were shown between the control samples and ozone treatment at 200 ppb. Sensory analysis (consumer test) also showed no specific defects with the ozone‐treated samples. It was observed that the ozone treatment at 300 ppb had limited microbiological growth and no alteration of sensory aspects but did not have the same positive impact on some aspects of overall quality, compared with ozone treatment at 200 ppb. CONCLUSION The use of gaseous ozone treatments during ripening of pecorino cheese can potentially offer an excellent solution for the control of mite growth, while preserving the quality and sensory characteristics of the product. For this reason, this technique could be very useful for commercial purposes. © 2022 Society of Chemical Industry.
The dairy field has considerable economic relevance in the agri-food system, but also has the need to develop new ‘green’ supply chain actions to ensure that sustainable products are in line with consumer requirements. In recent years, the dairy farming industry has generally improved in terms of equipment and product performance, but innovation must be linked to traditional product specifications. During cheese ripening, the storage areas and the direct contact of the cheese with the wood must be carefully managed because the proliferation of contaminating microorganisms, parasites, and insects increases significantly and product quality quickly declines, notably from a sensory level. The use of ozone (as gas or as ozonated water) can be effective for sanitizing air, water, and surfaces in contact with food, and its use can also be extended to the treatment of waste and process water. Ozone is easily generated and is eco-sustainable as it tends to disappear in a short time, leaving no residues of ozone. However, its oxidation potential can lead to the peroxidation of cheese polyunsaturated fatty acids. In this review we intend to investigate the use of ozone in the dairy sector, selecting the studies that have been most relevant over the last years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.