Bioactive lipid molecules as lysophosphatidic acid (LPA), prostaglandins (PG) and endocannabinoids are important mediators of embryo implantation. Based on previous published data we became interested in studying the interaction between these three groups of lipid derivatives in the rat uterus during the window of implantation. Thus, we adopted a pharmacological approach in vitro using LPA, DGPP (a selective antagonist of LPA3, an LPA receptor), endocannabinoids’ receptor selective antagonists (AM251 and AM630) and non selective (indomethacin) and selective (NS-398) inhibitors of cyclooxygenase-1 and 2 enzymes. Cyclooxygenase isoforms participate in prostaglandins’ synthesis. The incubation of the uterus from rats pregnant on day 5 of gestation (implantation window) with LPA augmented the activity and the expression of fatty acid amide hydrolase, the main enzyme involved in the degradation of endocannabinoids in the rodent uteri, suggesting that LPA decreased endocannabinoids’ levels during embryo implantation. It has been reported that high endocannabinoids are deleterious for implantation. Also, LPA increased PGE2 production and cyclooxygenase-2 expression. The incubation of LPA with indomethacin or NS-398 reversed the increment in PGE2 production, suggesting that cyclooxygenase-2 was the isoform involved in LPA effect. PGs are important mediators of decidualization and vascularization at the implantation sites. All these effects were mediated by LPA3, as the incubation with DGPP completely reversed LPA stimulatory actions. Besides, we also observed that endocannabinoids mediated the stimulatory effect of LPA on cyclooxygenase-2 derived PGE2 production, as the incubation of LPA with AM251 or AM630 completely reversed LPA effect. Also, LPA augmented via LPA3 decidualization and vascularization markers. Overall, the results presented here demonstrate the participation of LPA3 in the process of implantation through the interaction with other groups of lipid molecules, prostaglandins and endocannabinoids, which prepare the uterine milieu for embryo invasion during the window of implantation.
Preterm delivery is the leading cause of neonatal mortality and contributes to delayed physical and cognitive development in children. At present, there is no efficient therapy to prevent preterm labor. A large body of evidence suggests that intra-amniotic infections may be a significant and potentially preventable cause of preterm birth. This work assessed the effect of melatonin in a murine model of inflammation-associated preterm delivery which mimics central features of preterm infection in humans. For this purpose, preterm labor was induced in BALB/c mice by intraperitoneal injections of bacterial lipopolysaccharide (LPS) at 10.00 hr (10 μg LPS) and 13.00 hr (20 μg LPS) on day 15 of pregnancy. On day 14 of pregnancy, a pellet of melatonin (25 mg) had been subcutaneously implanted into a group of animals. In the absence of melatonin, a 100% incidence of preterm birth was observed in LPS-treated animals, and the fetuses showed widespread damage. By comparison, treatment with melatonin prevented preterm birth in 50% of the cases, and all pups from melatonin-treated females were born alive and their body weight did not differ from control animals. Melatonin significantly prevented the LPS-induced rises in uterine prostaglandin (PG) E2 , PGF2α, and cyclooxygenase-2 protein levels. In addition, melatonin prevented the LPS-induced increase in uterine nitric oxide (NO) production, inducible NO synthase protein, and tumor necrosis factor-alpha (TNFα) levels. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent preterm labor and to increase offspring survival.
Lysophosphatidic acid (LPA) affects several female reproductive functions through G-protein-coupled receptors. LPA contributes to embryo implantation via the lysophospholipid LPA receptor. In the present study we investigated the participation of endogenous LPA signalling through the LPA receptor in vascularisation and decidualisation, two crucial events at the maternal-fetal interface. Pregnant rats were treated with diacylglycerol pyrophosphate (DGPP), a highly selective antagonist of LPA receptors, on Day 5 of gestation. Pregnant rats received intrauterine (i.u.) injections of single doses of DGPP (0.1mgkg) in a total volume of 2μL in the left horn (treated horn) in the morning of GD5. DGPP treatment produced aberrant embryo spacing and increased embryo resorption. The LPA receptor antagonist decreased the cross-sectional length of the uterine and arcuate arteries and induced histological anomalies in the decidua and placentas. Marked haemorrhagic processes, infiltration of immune cells and tissue disorganisation were observed in decidual and placental tissues from sites of resorption. The mRNA expression of three vascularisation markers, namely interleukin 10 (Il10), vascular endothelial growth factor (Vegfa) and vascular endothelial growth factor receptor 1 (Vegfr1), was reduced at sites of resorption from Day 8. The results show that the disruption of endogenous LPA signalling by blocking the LPA receptor modified the development of uterine vessels with consequences in the formation of the decidua and placenta and in the growth of embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.