Although much is known about the visual system of vertebrates in general, studies regarding vision in reptiles, and snakes in particular, are scarce. Reptiles display diverse ocular structures, including different types of retinae such as pure cone, mostly rod, or duplex retinas (containing both rods and cones); however, the same five opsin-based photopigments are found in many of these animals. It is thought that ancestral snakes were nocturnal and/or fossorial, and, as such, they have lost two pigments, but retained three visual opsin classes. These are the RH1 gene (rod opsin or rhodopsin-like-1) expressed in rods and two cone opsins, namely LWS (long-wavelength-sensitive) and SWS1 (short-wavelength-sensitive-1) genes. Until recently, the study of snake photopigments has been largely ignored. However, its importance has become clear within the past few years as studies reconsider Walls’ transmutation theory, which was first proposed in the 1930s. In this study, the visual pigments of Bothrops atrox (the common lancehead), a South American pit viper, were examined. Specifically, full-length RH1 and LWS opsin gene sequences were cloned, as well as most of the SWS1 opsin gene. These sequences were subsequently used for phylogenetic analysis and to predict the wavelength of maximum absorbance (λmax) for each photopigment. This is the first report to support the potential for rudimentary color vision in a South American viper, specifically a species that is regarded as being nocturnal.
Reptiles are a highly diverse class that consists of snakes, geckos, iguanid lizards, and chameleons among others. Given their unique phylogenetic position in relation to both birds and mammals, reptiles are interesting animal models with which to decipher the evolution of vertebrate photopigments (opsin protein plus a light-sensitive retinal chromophore) and their contribution to vision. Reptiles possess different types of retinae that are defined primarily by variations in photoreceptor morphology, which range from pure-cone to rod-dominated retinae with many species possessing duplex (rods and cones) retinae. In most cases, the type of retina is thought to reflect both the lifestyle and the behavior of the animal, which can vary between diurnal, nocturnal, or crepuscular behavioral activities. Reptiles, and in particular geckos and snakes, have been used as prime examples for the "transmutation" hypothesis proposed by Walls in the 1930s-1940s, which postulates that some reptilian species have migrated from diurnality to nocturnality, before subsequently returning to diurnal activities once again. This theory further states that these behavioral changes are reflected in subsequent changes in photoreceptor morphology and function from cones to rods, with a return to cone-like photoreceptors once again. Modern sequencing techniques have further investigated the "transmutation" hypothesis by using molecular biology to study the phototransduction cascades of rod-and cone-like photoreceptors in the reptilian retina. This review will discuss what is currently known about the evolution of opsin-based photopigments in reptiles, relating habitat to photoreceptor morphology, as well as opsin and phototransduction cascade gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.