We report evidence further supporting homology between proteins in the F1FO‐ATP synthetase and the bacterial flagellar motor (BFM). BFM proteins FliH, FliI, and FliJ have been hypothesized to be homologous to FO‐b + F1‐δ, F1‐α/β, and F1‐γ, with similar structure and interactions. We conduct a further test by constructing a gene order dataset, examining the order of fliH, fliI, and fliJ genes across the phylogenetic breadth of flagellar and nonflagellar type 3 secretion systems, and comparing this to published surveys of gene order in the F1FO‐ATP synthetase, its N‐ATPase relatives, and the bacterial/archaeal V‐ and A‐type ATPases. Strikingly, the fliHIJ gene order was deeply conserved, with the few exceptions appearing derived, and exactly matching the widely conserved F‐ATPase gene order atpFHAG, coding for subunits b‐δ‐α‐γ. The V/A‐type ATPases have a similar conserved gene order. Our results confirm homology between these systems, and suggest a rare case of synteny conserved over billions of years, predating the Last Universal Common Ancestor (LUCA).
Evidence of homology between proteins in the ATP synthetase and the bacterial flagellar motor (BFM) has been accumulating since the 1980s. Specifically, the BFM’s Type 3 Secretion System (T3SS) export apparatus FliH, FliI, and FliJ are considered homologous to FO-b + F1-δ, F1-α/β, and F1-γ, and have similar structure and interactions. We review the discoveries that advanced the homology hypothesis and then conduct a further test by examining gene order in the two systems and their relatives. Conservation of gene order, or synteny, is often observed between closely related prokaryote species, but usually degrades with phylogenetic distance. As a result, observed conservation of synteny over vast phylogenetic distances can be evidence of shared ancestral coexpression, interaction, and function. We constructed a gene order dataset by examining the order of fliH, fliI, and fliJ genes across the phylogenetic breadth of flagellar and nonflagellar T3SS. We compared this to published surveys of gene order in the F1FO-ATP synthetase, its N-ATPase relatives, and the bacterial/archaeal V- and A-type ATPases. Strikingly, the fliHIJ gene order was deeply conserved, with the few exceptions appearing derived, and exactly matching the widely conserved F-ATPase gene order atpFHAG, coding for subunits b-δ-α-γ. The V/A-type ATPases have a similar conserved gene order shared for homologous components. Our results further strengthen the argument for homology between these systems, and suggest a rare case of synteny conserved over billions of years, dating back to well before the Last Universal Common Ancestor (LUCA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.