We propose to use the visual denotations of linguistic expressions (i.e. the set of images they describe) to define novel denotational similarity metrics, which we show to be at least as beneficial as distributional similarities for two tasks that require semantic inference. To compute these denotational similarities, we construct a denotation graph, i.e. a subsumption hierarchy over constituents and their denotations, based on a large corpus of 30K images and 150K descriptive captions.
The ability to associate images with natural language sentences that describe what is depicted in them is a hallmark of image understanding, and a prerequisite for applications such as sentence-based image search. In analogy to image search, we propose to frame sentence-based image annotation as the task of ranking a given pool of captions. We introduce a new benchmark collection for sentence-based image description and search, consisting of 8,000 images that are each paired with five different captions which provide clear descriptions of the salient entities and events. We introduce a number of systems that perform quite well on this task, even though they are only based on features that can be obtained with minimal supervision. Our results clearly indicate the importance of training on multiple captions per image, and of capturing syntactic (word order-based) and semantic features of these captions. We also perform an in-depth comparison of human and automatic evaluation metrics for this task, and propose strategies for collecting human judgments cheaply and on a very large scale, allowing us to augment our collection with additional relevance judgments of which captions describe which image. Our analysis shows that metrics that consider the ranked list of results for each query image or sentence are significantly more robust than metrics that are based on a single response per query. Moreover, our study suggests that the evaluation of ranking-based image description systems may be fully automated.
Current evaluation metrics for image description may be too coarse. We therefore propose a series of binary forced-choice tasks that each focus on a different aspect of the captions. We evaluate a number of different off-the-shelf image description systems. Our results indicate strengths and shortcomings of both generation and ranking based approaches.
Associating photographs with complete sentences that describe what is depicted in them is a challenging problem. This paper examines how an approach that is inspired by image tagging techniques which can scale to very large data sets performs on this much harder task, and examines some of the linguistic difficulties that this bag-of-words model faces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.