Abstract-Texture features have always been a key attribute in image recognition and classification. In this paper we propose two pre-processing methods for enhancing the performance of widely used color texture recognition methods. In the first approach we propose decorrelation stretching for color enhancement, which is known to improve the interpretability of color images. The second method employs Cartoon-Texture decomposition for sharpening the texture component of the image. We show that both methods improve the classification accuracy by 7% and 4% respectively when applied to images prior to extracting auto and cross-correlation features. Our conclusion is that the proposed a p p r o a c h could be helpful in machine vision tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.