FliN is a component of the bacterial flagellum that is present at levels of more than 100 copies and forms the bulk of the C ring, a drum-shaped structure at the inner end of the basal body. FliN interacts with FliG and FliM to form the rotor-mounted switch complex that controls clockwise-counterclockwise switching of the motor. In addition to its functions in motor rotation and switching, FliN is thought to have a role in the export of proteins that form the exterior structures of the flagellum (the rod, hook, and filament). Here, we describe the crystal structure of most of the FliN protein of Thermotoga maritima.
contributed equally to this work Uroporphyrinogen III synthase, U3S, the fourth enzyme in the porphyrin biosynthetic pathway, catalyzes cyclization of the linear tetrapyrrole, hydroxymethylbilane, to the macrocyclic uroporphyrinogen III, which is used in several different pathways to form heme, siroheme, chlorophyll, F 430 and vitamin B 12 . U3S activity is essential in all organisms, and decreased activity in humans leads to the autosomal recessive disorder congenital erythropoetic porphyria. We have determined the crystal structure of recombinant human U3S at 1.85 A Ê resolution. The protein folds into two a/b domains connected by a b-ladder. The active site appears to be located between the domains, and variations in relative domain positions observed between crystallographically independent molecules indicates the presence of exibility that may be important in the catalytic cycle. Possible mechanisms of catalysis were probed by mutating each of the four invariant residues in the protein that have titratable side chains. Additionally, six other highly conserved and titratable side chains were also mutated. In no case, however, did one of these mutations abolish enzyme activity, suggesting that the mechanism does not require acid/base catalysis.
We report a new material design concept for synthetic, thermally responsive poly(N-isopropylacrylamide)-based copolymer nanoparticle (NP) hydrogels, which protect proteins from thermal stress. The NP hydrogels bind and protect a target enzyme from irreversible activity loss upon exposure to heat but "autonomously" release the enzyme upon subsequent cooling of the solution. Incorporation of the optimized amount of negatively charged and hydrophobic comonomers to the NP hydrogels was key to achieve these desired functions. As the NP hydrogels do not show a strong affinity for the enzyme at room temperature, they can remain in solution without adversely affecting enzymatic activity or they can be removed by filtration to leave the enzyme in solution. The results demonstrate the promise of this approach for improving the thermal tolerance of proteins.
The FliM protein of Escherichia coli is required for the assembly and function of flagella. Genetic analyses and binding studies have shown that FliM interacts with several other flagellar proteins, including FliN, FliG, phosphorylated CheY, other copies of FliM, and possibly MotA and FliF. Here, we examine the effects of a set of linker insertions and partial deletions in FliM on its binding to FliN, FliG, CheY, and phospho-CheY and on its functions in flagellar assembly and rotation. The results suggest that FliM is organized into multiple domains. A C-terminal domain of about 90 residues binds to FliN in coprecipitation experiments, is most stable when coexpressed with FliN, and has some sequence similarity to FliN. This C-terminal domain is joined to the rest of FliM by a segment (residues 237 to 247) that is poorly conserved, tolerates linker insertion, and may be an interdomain linker. Binding to FliG occurs through multiple segments of FliM, some in the C-terminal domain and others in an N-terminal domain of 144 residues. Binding of FliM to CheY and phospho-CheY was complex. In coprecipitation experiments using purified FliM, the protein bound weakly to unphosphorylated CheY and more strongly to phospho-CheY, in agreement with previous reports. By contrast, in experiments using FliM in fresh cell lysates, the protein bound to unphosphorylated CheY about as well as to phospho-CheY. Determinants for binding CheY occur both near the N terminus of FliM, which appears most important for binding to the phosphorylated protein, and in the C-terminal domain, which binds more strongly to unphosphorylated CheY. Several different deletions and linker insertions in FliM enhanced its binding to phospho-CheY in coprecipitation experiments with protein from cell lysates. This suggests that determinants for binding phospho-CheY may be partly masked in the FliM protein as it exists in the cytoplasm. A model is proposed for the arrangement and function of FliM domains in the flagellar motor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.