In monkeys, the rostral part of ventral premotor cortex (area F5) contains neurons that discharge, both when the monkey grasps or manipulates objects and when it observes the experimenter making similar actions.These neurons (mirror neurons) appear to represent a system that matches observed events to similar, internally generated actions, and in this way forms a link between the observer and the actor. Transcranial magnetic stimulation and positron emission tomography (PET) experiments suggest that a mirror system for gesture recognition also exists in humans and includes Broca's area. We propose here that such an observation/execution matching system provides a necessary bridge from 'doing' to 'communicating',as the link between actor and observer becomes a link between the sender and the receiver of each message.
The article analyzes the neural and functional grounding of language skills as well as their emergence in hominid evolution, hypothesizing stages leading from abilities known to exist in monkeys and apes and presumed to exist in our hominid ancestors right through to modern spoken and signed languages. The starting point is the observation that both premotor area F5 in monkeys and Broca's area in humans contain a “mirror system” active for both execution and observation of manual actions, and that F5 and Broca's area are homologous brain regions. This grounded the mirror system hypothesis of Rizzolatti and Arbib (1998) which offers the mirror system for grasping as a key neural “missing link” between the abilities of our nonhuman ancestors of 20 million years ago and modern human language, with manual gestures rather than a system for vocal communication providing the initial seed for this evolutionary process. The present article, however, goes “beyond the mirror” to offer hypotheses on evolutionary changes within and outside the mirror systems which may have occurred to equip Homo sapiens with a language-ready brain. Crucial to the early stages of this progression is the mirror system for grasping and its extension to permit imitation. Imitation is seen as evolving via a so-called simple system such as that found in chimpanzees (which allows imitation of complex “object-oriented” sequences but only as the result of extensive practice) to a so-called complex system found in humans (which allows rapid imitation even of complex sequences, under appropriate conditions) which supports pantomime. This is hypothesized to have provided the substrate for the development of protosign, a combinatorially open repertoire of manual gestures, which then provides the scaffolding for the emergence of protospeech (which thus owes little to nonhuman vocalizations), with protosign and protospeech then developing in an expanding spiral. It is argued that these stages involve biological evolution of both brain and body. By contrast, it is argued that the progression from protosign and protospeech to languages with full-blown syntax and compositional semantics was a historical phenomenon in the development of Homo sapiens, involving few if any further biological changes.
Positron emission tomography imaging of cerebral blood flow was used to localize brain areas involved in the representation of hand grasping movements. Seven normal subjects were scanned under three conditions. In the first, they observed precision grasping of common objects performed by the examiner. In the second, they imagined themselves grasping the objects without actually moving the hand. These two tasks were compared with a control task of object viewing. Grasp observation activated the left rostral superior temporal sulcus, left inferior frontal cortex (area 45), left rostral inferior parietal cortex (area 40), the rostral part of left supplementary motor area (SMA-proper), and the right dorsal premotor cortex. Imagined grasping activated the left inferior frontal (area 44) and middle frontal cortex, left caudal inferior parietal cortex (area 40), a more extensive response in left rostral SMA-proper, and left dorsal premotor cortex. The two conditions activated different areas of the right posterior cerebellar cortex. We propose that the areas active during grasping observation may form a circuit for recognition of hand-object interactions, whereas the areas active during imagined grasping may be a putative human homologue of a circuit for hand grasping movements recently defined in nonhuman primates. The location of responses in SMA-proper confirms the rostrocaudal segregation of this area for imagined and real movement. A similar segregation is also present in the cerebellum, with imagined and observed grasping movements activating different parts of the posterior lobe and real movements activating the anterior lobe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.