cDNA clone MS73 codes for an ATPase that is a regulatory subunit of the 26 S proteasome. Reverse transcriptase polymerase chain reaction analysis demonstrates that the expression of the gene dramatically increases in the pre-eclosion period. Western analyses show increases in other related. ATPases including MS73, MSS1, and mts2 but not TBP1. A similar increase in the 30-kDa subunit of the 20 S proteasome occurs. There are accompanying large changes in the peptidase activities of the 26 S proteasome. Relative to the 30-kDa subunit, there is no change in MSS1 and MS73, a 3-fold increase in mts2, and a 5-fold decline in TBP1. A large increase in the concentration of 26 S proteasomes together with extensive regulatory reprogramming may facilitate rapid muscular proteolysis.
While it is well established that the fatty acid composition of dietary fat is important in determining plasma lipoprotein cholesterol concentrations, the effects of changing the absolute quantities of the individual fatty acids are less clear. In the present study Golden Syrian hamsters were fed on isoenergetic, low cholesterol (0.05 g/kg) diets containing 100, 150 or 200 g added fat/kg. This consisted of triolein (TO) alone, or equal proportions of TO and either trimyristin (TM), tripalmitin (TP) or tristearin (TS). Each trial also included a control group fed on a diet containing 50g TO/kg. As the mass of TO in the diet increased, plasma VLDL-cholesterol concentrations rose. The Th4-rich diets produced a concentration-dependent increase in total plasma cholesterol which was a result of significant increases in both VLDL and HDL levels. The TP-rich diets increased plasma LDL-and HDL-cholesterol levels in a concentrationdependent manner. TS-containing diets did not increase the cholesterol content of any of the major lipoprotein fractions. Hepatic LDL-receptor mRNA concentrations were significantly decreased in animals fed on TP, while apolipoprotein B mRNA concentrations were significantly increased. Thus, on a low-cholesterol diet, increasing the absolute amount of dietary palmitic acid increases LDL-cholesterol more than either myristic or stearic acid. These effects on lipoprotein metabolism may be exerted through specific modulation of the expression of the LDL receptor and apolipoprotein B genes.
Different dietary fatty acids exert specific effects on plasma lipids but the mechanism by which this occurs is unknown. Hamsters were fed on low-cholesterol diets containing triacylglycerols enriched in specific saturated fatty acids, and effects on plasma lipids and the expression of genes involved in hepatic lipoprotein metabolism were measured. Trimyristin and tripalmitin caused significant rises in low-density lipoprotein (LDL) cholesterol which were accompanied by significant reductions in hepatic LDL receptor mRNA levels. Tripalmitin also increased hepatic expression of the apolipoprotein B gene, implying an increased production of LDL via very-low-density lipoprotein (VLDL) and decreased removal of LDL in animals fed this fat. Hepatic levels of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not vary significantly between the groups. Compared with triolein, tristearin had little effect on hepatic gene expression or total plasma cholesterol. However, it caused a marked decrease in VLDL cholesterol and a rise in LDL cholesterol such that overall it appeared to be neutral. Lipid analysis suggested a rapid desaturation of much of the dietary stearate. The differential changes in plasma lipids and hepatic mRNA levels induced by specific dietary fats suggests a role for fatty acids or a metabolite thereof in the regulation of the expression of genes involved in lipoprotein metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.