Arriving at a medical diagnosis is a highly complex process that is extremely error prone. Missed or delayed diagnoses often lead to patient harm and missed opportunities for treatment. Since medical imaging is a major contributor to the overall diagnostic process, it is also a major potential source of diagnostic error. Although some diagnoses may be missed because of the technical or physical limitations of the imaging modality, including image resolution, intrinsic or extrinsic contrast, and signal-to-noise ratio, most missed radiologic diagnoses are attributable to image interpretation errors by radiologists. Radiologic interpretation cannot be mechanized or automated; it is a human enterprise based on complex psychophysiologic and cognitive processes and is itself subject to a wide variety of error types, including perceptual errors (those in which an important abnormality is simply not seen on the images) and cognitive errors (those in which the abnormality is visually detected but the meaning or importance of the finding is not correctly understood or appreciated). The overall prevalence of radiologists' errors in practice does not appear to have changed since it was first estimated in the 1960s. The authors review the epidemiology of errors in diagnostic radiology, including a recently proposed taxonomy of radiologists' errors, as well as research findings, in an attempt to elucidate possible underlying causes of these errors. The authors also propose strategies for error reduction in radiology. On the basis of current understanding, specific suggestions are offered as to how radiologists can improve their performance in practice.
The ACR recognizes that radiology practices are grappling with when and how to safely resume routine radiology care during the coronavirus disease 2019 (COVID-19) pandemic. Although it is unclear how long the pandemic will last, it may persist for many months. Throughout this time, it will be important to perform safe, comprehensive, and effective care for patients with and patients without COVID-19, recognizing that asymptomatic transmission is common with this disease. Local idiosyncrasies prevent a single prescriptive strategy. However, general considerations can be applied to most practice environments. A comprehensive strategy will include consideration of local COVID-19 statistics; availability of personal protective equipment; local, state, and federal government mandates; institutional regulatory guidance; local safety measures; health care worker availability; patient and health care worker risk factors; factors specific to the indication(s) for radiology care; and examination or procedure acuity. An accurate risk-benefit analysis of postponing versus performing a given routine radiology examination or procedure often is not possible because of many unknown and complex factors. However, this is the overriding principle: If the risk of illness or death to a health care worker or patient from health care-acquired COVID-19 is greater than the risk of illness or death from delaying radiology care, the care should be delayed; however, if the opposite is true, the radiology care should proceed in a timely fashion.
Skeletal muscles are highly plastic tissues capable dramatic remodeling in response to use, disuse, disease, and other factors. Growing evidence suggests that adipose tissues exert significant effects on the basic fiber‐type composition of skeletal muscles. In the current study, we investigated the long‐term effects of a high‐fat diet and subsequent obesity on the muscle fiber types in C57 BLK/6J mice. Litters of mice were randomly assigned to either a high‐fat diet or a control group at the time of weaning, and were maintained on this diet for approximately 1 year. Single fibers were harvested from the soleus and plantaris muscles, and fiber types were determined using SDS‐PAGE. The high‐fat diet mice were significantly heavier than the control mice (39.17 ± 2.7 g vs. 56.87 ± 3.4 g; P < 0.0003), but muscle masses were not different. In male mice, the high‐fat diet was associated with a significantly lower proportion of slow, type I fibers in the soleus muscle (40.4 ± 3.5% vs. 29.33 ± 2.6%; P < 0.0165). Moreover, the proportion of type I fibers in the soleus of male mice was inversely proportional to the relative fatness of the male mice (P < 0.003; r2 = 0.65), but no association was observed in female mice. In male mice, the decline in type I fibers was correlated with an increase in type I/IIA hybrid fibers, suggesting that the type I fibers were transformed primarily into these hybrids. The reported trends indicate that type I fibers are most susceptible to the effects of obesity, and that these fiber‐type changes can be sex specific.
The addition of a mandatory field in the CPOE record was associated with a significant improvement in the appropriate ordering of pulmonary CTA but did not change the PE positive rate or CTA utilization. It seems likely that physicians gradually inflated the modified Wells scores in spite of the fact that a threshold modified Wells score was not required to perform pulmonary CTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.