Multiple mutations are required for cancer development, and genome sequencing has revealed that several cancers, including breast, have somatic mutation spectra dominated by C-to-T transitions1–9. Most of these mutations occur at hydrolytically disfavored10 non-methylated cytosines throughout the genome, and are sometimes clustered8. Here, we show that the DNA cytosine deaminase APOBEC3B (A3B) is a likely source of these mutations. A3B mRNA is up-regulated in the majority of primary breast tumors and breast cancer cell lines. Tumors that express high levels of A3B have twice as many mutations as those that express low levels and are more likely to have mutations in TP53. Endogenous A3B protein is predominantly nuclear and the only detectable source of DNA C-to-U editing activity in breast cancer cell line extracts. Knockdown experiments show that endogenous A3B correlates with elevated levels of genomic uracil, increased mutation frequencies, and C-to-T transitions. Furthermore, induced A3B over-expression causes cell cycle deviations, cell death, DNA fragmentation, γ-H2AX accumulation, and C-to-T mutations. Our data suggest a model in which A3B-catalyzed deamination provides a chronic source of DNA damage in breast cancers that could select TP53 inactivation and explain how some tumors evolve rapidly and manifest heterogeneity.
APOBEC-catalyzed cytosine-to-uracil deamination of single-stranded (ss)DNA has beneficial functions in immunity and detrimental roles in cancer. APOBEC enzymes have intrinsic dinucleotide specificities that impart hallmark mutation signatures. Despite numerous structures, mechanisms for global ssDNA recognition and local target sequence selection remain unclear. Here, we report crystal structures of human APOBEC3A and a chimera of human APOBEC3B and APOBEC3A bound to ssDNA at 3.1 and 1.7 angstroms resolution, respectively. These structures reveal a U-shaped DNA conformation, with the specificity-conferring −1 thymine flipped out and the target cytosine inserted deep into the zinc-coordinating active site pocket. The −1 thymine base fits between flexible loops in a groove that forms upon binding ssDNA, and it makes direct hydrogen bonds with the protein accounting for the strong 5′-TC preference. These studies explain both conserved and unique properties among APOBEC family members, and provide a basis for the rational design of inhibitors to impede the evolvability of viruses and tumors.
Cytosine mutations within TCA/T motifs are common in cancer. A likely cause is the DNA cytosine deaminase APOBEC3B (A3B). However, A3B-null breast tumours still have this mutational bias. Here we show that APOBEC3H haplotype I (A3H-I) provides a likely solution to this paradox. A3B-null tumours with this mutational bias have at least one copy of A3H-I despite little genetic linkage between these genes. Although deemed inactive previously, A3H-I has robust activity in biochemical and cellular assays, similar to A3H-II after compensation for lower protein expression levels. Gly105 in A3H-I (versus Arg105 in A3H-II) results in lower protein expression levels and increased nuclear localization, providing a mechanism for accessing genomic DNA. A3H-I also associates with clonal TCA/T-biased mutations in lung adenocarcinoma suggesting this enzyme makes broader contributions to cancer mutagenesis. These studies combine to suggest that A3B and A3H-I, together, explain the bulk of ‘APOBEC signature' mutations in cancer.
Background: APOBEC3B-catalyzed DNA cytosine deamination causes mutations in cancer. Results: We present the first APOBEC3B catalytic domain crystal structures including a dCMP-bound form. Conclusion: A closed active site conformation distinguishes APOBEC3B from related enzymes and suggests that conformational changes are central to the overall single-stranded DNA binding mechanism. Significance: These high resolution structures provide a foundation for inhibitor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.