Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.
Consistent with the excellent clinical results in testicular germ cell tumors
(TGCT), most cell lines derived from this cancer show an exquisite sensitivity
to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to
apoptosis plays a central role in this hypersensitive phenotype. The role of the
tumor suppressor p53 in this response, however, remains controversial. Here we
show that siRNA-mediated silencing of p53 is sufficient to completely abrogate
hypersensitivity not only to Cisplatin but also to non-genotoxic inducers of p53
such as the Mdm2 antagonist Nutlin-3 and the proteasome inhibitor Bortezomib.
The close relationship between p53 protein levels and induction of apoptosis is
lost upon short-term differentiation, indicating that this predominant
pro-apoptotic function of p53 is unique in pluripotent embryonal carcinoma (EC)
cells. RNA interference experiments as well as microarray analysis demonstrated
a central role of the pro-apoptotic p53 target gene NOXA in the p53-dependent
apoptotic response of these cells. In conclusion, our data indicate that the
hypersensitivity of TGCT cells is a result of their unique sensitivity to p53
activation. Furthermore, in the very specific cellular context of germ
cell-derived pluripotent EC cells, p53 function appears to be limited to
induction of apoptosis.
We could demonstrate in humans that USPIO-based contrast agents enable a more detailed characterization of myocardial infarct pathology mainly by detecting infiltrating macrophages. Considering the multi-functionality of USPIO-based particles and their superior safety profile compared with gadolinium-based compounds, these observations open up new vistas for the clinical application of USPIO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.