The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. While SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homolog Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE- tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.
We sought to determine the epidemiology of carbapenem-resistant Enterobacteriaceae and to investigate the emergence of carbapenem-resistant Klebsiella pneumoniae in two teaching hospitals in Manila, Philippines. We screened 364 Enterobacteriaceae for carbapenem resistance between 2012 and 2013 and detected four carbapenem-resistant K. pneumoniae isolates from three different patients. We used whole genome sequencing to determine the antibiotic resistance profiles and confirmed the presence of carbapenemase genes by multiplex PCR. We used multilocus sequence typing and PCR-based replicon typing to genetically characterize the carbapenem-resistant isolates. The carbapenemase gene blaNDM was detected in K. pneumoniae isolates from two patients. The first patient had ventilator-associated pneumonia and lumbar shunt infection from K. pneumoniae ST273 carrying blaNDM-7. The second patient had asymptomatic genitourinary colonization with K. pneumoniae ST656 carrying blaNDM-1. The third patient had a gluteal abscess with K. pneumoniae ST1 that did not carry a carbapenemase gene, but did carry blaDHA-1, blaOXA-1, and blaSHV-1. In this study, we report the first cases of blaNDM-carrying pathogens in the Philippines and add to the growing evidence of the worldwide spread of ST273 and NDM-7, a more efficient carbapenem hydrolyzer than NDM-1.
Current efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover single nucleotide polymorphisms (SNPs) unanimously conserved in each pool. The multidrug-resistant pools were genotypically similar to SMS-3-5, a previously sequenced multidrug-resistant isolate from a polluted environment. The similarity was evenly spread across the entire genome and not limited to plasmid or pathogenicity island loci. Among the pools of clinical isolates, genomic variation was concentrated adjacent to previously reported inversion and duplication differences between the SMS-3-5 isolate and the drug-susceptible laboratory strain, DH10B. SNPs that result in non-synonymous changes in gyrA (encoding the well-known S83L allele associated with fluoroquinolone resistance), mutM, ligB, and recG were unanimously conserved in every fluoroquinolone-resistant pool. Alleles of the latter three genes are tightly linked among most sequenced E. coli genomes, and had not been implicated in antibiotic resistance previously. The changes in these genes map to amino acid positions in alpha helices that are involved in DNA binding. Plasmid-encoded complementation of null strains with either allelic variant of mutM or ligB resulted in variable responses to ultraviolet light or hydrogen peroxide treatment as markers of induced DNA damage, indicating their importance in DNA metabolism and revealing a potential mechanism for fluoroquinolone resistance. Our approach uncovered evidence that additional DNA binding enzymes may contribute to fluoroquinolone resistance and further implicate environmental bacteria as a reservoir for antibiotic resistance.
Escherichia coli encodes two DNA ligases, ligase A, which is essential under normal laboratory growth conditions, and ligase B, which is not. Here we report potential functions of ligase B. We found that across the entire Enterobacteriaceae family, ligase B is highly conserved in both amino acid identity and synteny with genes associated with oxidative stress. Deletion of ligB sensitized E. coli to specific DNA damaging agents and antibiotics resulted in a weak mutator phenotype, and decreased biofilm formation. Overexpression of ligB caused a dramatic extension of lag phase that eventually resumed normal growth. The ligase function of ligase B was not required to mediate the extended lag phase, as overexpression of a ligase-deficient ligB mutant also blocked growth. Overexpression of ligB during logarithmic growth caused an immediate block of cell growth and DNA replication, and death of about half of cells. These data support a potential role for ligase B in the base excision repair pathway or the mismatch repair pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.