Management and conservation of populations of animals requires information on where they are, why they are there, and where else they could be. These objectives are typically approached by collecting data on the animals' use of space, relating these positional data to prevailing environmental conditions and employing the resulting statistical models to predict usage at other geographical regions. Technical advances in wildlife telemetry have accomplished manifold increases in the amount and quality of available data, creating the need for a statistical framework that can use them to make population-level inferences for habitat preference and space-use. This has been slow-in-coming because wildlife telemetry data are spatio-temporally autocorrelated, often unbalanced, presence-only observations of behaviourally complex animals, responding to a multitude of cross-correlated environmental variables.We review the evolution of regression models for the analysis of space-use and habitat preference and outline the essential features of a framework that emerges naturally from these foundations. This allows us to derive a relationship between usage of points in geographical space and preference of habitats in environmental space. Within this framework, we discuss eight challenges, inherent in the spatial analysis of telemetry data and, for each, we propose solutions that can work in tandem. Specifically, we propose a logistic, mixed-effects approach that uses generalized additive transformations of the environmental covariates and is fitted to a response data-set comprising the telemetry and simulated observations, under a case-control design.We apply this framework to a non-trivial case-study using satellite-tagged grey seals Halichoerus grypus from the east coast of Scotland. We perform model selection by cross-validation and confront our final model's predictions with telemetry data from the same, as well as different, geographical regions. We conclude that, despite the complex behaviour of the study species, flexible empirical models can capture the environmental relationships that shape population distributions.
Southern elephant seals (Mirounga leonina) are among the most proficient of mammalian divers and are a major component of the Antarctic food web. Yet little is known of their movements or interaction with their oceanic environment. Specially designed satellite-link data loggers allowed us to visualize the 3-D movements of elephant seals as they swam rapidly from South Georgia to distant (up to 2650 km) areas of Antarctic continental shelf. One seal dived continuously to the sea bed in one small area for a month, implying consumption of benthic prey. Dives here were shorter even though average swimming velocity was lower, It is suggested that the physiological requirements of feeding and digestion reduced the aerobic dive limit. Long distance travel to relocatable hydrographic or topographical features, such as shelf breaks, may allow large predators to locate prey more consistently than from mid-ocean searches.
With the development of time depth recorders (Kooyman, 1965) and satellite, radio and acoustic telemetry (e.g. Fancy et al., 1988;Fedak, 1992;Fedak et al., 1983;McConnell, 1986), it is now possible to study the behaviour of many free-ranging marine organisms. Although these data have provided new insights into the foraging ecology of marine species, there are still limitations in the types of information that can be collected. Specifically, direct observation or recording of feeding events is often impossible (particularly for animals ranging over large areas during extended trips), and it is consequently difficult to determine where and when individuals encounter and ingest food and how much of this is assimilated into the body energy stores. In some cases, instrumented individuals can be recaptured when they return to land, and their net growth, energy expenditure and change in body condition can be estimated and correlated with at-sea behaviour (Bost et al., 1997;Boyd et al., 1993;Boyd and Arnbom, 1991;Chappell et al., 1993;Kooyman et al., 1992;Le Boeuf et al., 2000). However, this only provides information on the relationship between body condition and the behaviour and movements integrated over months and thousands of kilometres, while we are frequently interested in Elephant seals regularly perform dives during which they spend a large proportion of time drifting passively through the water column. The rate of vertical change in depth during these 'drift' dives is largely a result of the proportion of lipid tissue in the body, with fatter seals having higher (more positive or less negative) drift rates compared with leaner seals. We examined the temporal changes in drift rates of 24 newly weaned southern elephant seal (Mirounga leonina) pups during their first trip to sea to determine if this easily recorded dive characteristic can be used to continuously monitor changes in body composition of seals throughout their foraging trips. All seals demonstrated a similar trend over time: drift rates were initially positive but decreased steadily over the first 30-50 days after departure (Phase 1), corresponding to seals becoming gradually less buoyant. Over the following ~100·days (Phase 2), drift rates again increased gradually, while during the last 20-45·days (Phase 3) drift rates either remained constant or decreased slightly. The daily rate of change in drift rate was negatively related to the daily rate of horizontal displacement (daily travel rate), and daily travel rates of more than ~80·km were almost exclusively associated with negative changes in drift rate. We developed a mechanistic model based on body compositions and morphometrics measured in the field, published values for the density of seawater and various body components, and values of drag coefficients for objects of different shapes. We used this model to examine the theoretical relationships between drift rate and body composition and carried out a sensitivity analysis to quantify errors and biases caused by varying model parameters. While v...
Responses by marine top predators to environmental variability have previously been almost impossible to observe directly. By using animal-mounted instruments simultaneously recording movements, diving behavior, and in situ oceanographic properties, we studied the behavioral and physiological responses of southern elephant seals to spatial environmental variability throughout their circumpolar range. Improved body condition of seals in the Atlantic sector was associated with Circumpolar Deep Water upwelling regions within the Antarctic Circumpolar Current, whereas High-Salinity Shelf Waters or temperature/salinity gradients under winter pack ice were important in the Indian and Pacific sectors. Energetic consequences of these variations could help explain recently observed population trends, showing the usefulness of this approach in examining the sensitivity of top predators to global and regional-scale climate variability.body condition ͉ ocean observation ͉ oceanography ͉ elephant seals
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.